УДК 631.4

ВЛИЯНИЕ АГРОТЕХНИЧЕСКИХ ПРИЕМОВ НА ИЗМЕНЕНИЕ ПОКАЗАТЕЛЕЙ ГУМУСНОГО СОСТОЯНИЯ И ЭНЕРГОЗАПАСОВ АГРОТЕМНОГУМУСОВЫХ ГЛЕЕВЫХ ПОЧВ ПРИ ПРОИЗРАСТАНИИ КОЗЛЯТНИКА ВОСТОЧНОГО (CALEGA ORIENTALIS)

Л. Н. ПУРТОВА, доктор биологических наук, главный научный сотрудник, Я. О. ТИМОФЕЕВА, кандидат биологических наук, старший научный сотрудник, Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН (690022, г. Владивосток, пр. 100-летия Владивостока, д. 159; e-mail: Purtova@biosoil.ru),

В. М. БОСЕНКО, аспирант,

Приморский научно-исследовательский институт сельского хозяйства (692539, г. Уссурийск, п. Тимирязевский, ул. Воложенина, д. 30)

Ключевые слова: почвы, гумус, физико-химические свойства почв, оценка гумусного состояния, Calega orientalis, энергозапасы почв, удобрения, плодородие.

Приведены результаты исследований по изучению изменения основных показателей гумусного состояния и энергозапасов почв, связанных с содержанием гумуса и минеральной частью агротемногумусовых глеевых почв в посевах козлятника восточного (Calega orientalis) под влиянием различных приемов обработки почв (боронование, дискование) с внесением минеральных удобрений. Отмечено изменение основных физико-химических и агрохимических свойств почв. Выявлена общая тенденция к повышению содержания гумуса на исследуемых вариантах опыта с посевом Calega orientalis. Количество гумуса соответствовало уровню средних и ниже средних, а запасы гумуса – средних значений. Более высокие показатели содержания гумуса зафиксированы на вариантах 2 (без обработок), 5 (дискование) с внесением удобрений в дозе $N_{45}P_{60}K_{60}$ и $N_{90}P_{120}K_{120}$ без обработки и варианте 9 (боронование + $N_{90}P_{120}K_{120}$). Боронование и дискование почв с использованием минеральных удобрений привели к усилению подвижности гумуса и увеличению в его составе фракций фульвокислот. Для исследуемых вариантов опыта в 2017 г. ($N_{45}P_{60}K_{60}$ + дискование, $N_{50}P_{120}K_{120}$ + доронование) характерен фульватно-гуматный и фульватный ($N_{45}P_{60}K_{60}$ + боронование) тип гумусообразования. Различные приемы агротехнической обработки в посевах Calega orientalis вызвали изменения в составе гуминовых кислот. При дисковании почв существенные изменения прослеживались при внесении минеральных удобрений $N_{45}P_{60}K_{60}$ усилило подвижность гуминовых кислот, что привело к возрастанию доли «свободных» ГК до высоких значений. Рассчитаны энергетические запасы почв, установлена более высокая энергетическая эффективность применения минеральных удобрений $N_{45}P_{60}K_{50}$ усилило подвижность гуминовых кислот, что привело к возрастанию доли «свободных» ГК до высоких значений. Рассчитаны энергетические запасы почв, установлена более высокая энергетическая эффективность применения минеральных удобрений $N_{45}P_{60}K_{60}$

INFLUENCE OF AGROTECHNICAL METHODS ON THE INDICATORS OF THE HUMUS STATUS AND THE STORED ENERGY AGRODAKHUMUS GLEY SOILS WHEN GROWING CALEGA ORIENTALIS

L. N. PURTOVA, doctor of biological sciences, chief researcher, Ya. O. TIMOFEEVA, candidate of biological sciences, senior researcher, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS (159 Stoletiya Vladivostoka str., 690022, Vladivostok; e-mail: Purtova@biosoil.ru),

V. M. BOSENKO, postgraduate student, Primorsky Research Institute of Agriculture (30 Volozhenina str., 692539, Ussuriisk, vil. Timeryazevsky)

Keywords: soils, humus, physico-chemical properties of soils, humus assessment, Galega orientalis, soil energy, fertilityr. The results of studies of changes in main indices of humus state of energy resources and soils related to the content of humus and mineral part agrodark humus gley soils with crops of Galega orientalis under the influence of different techniques of tillage (harrowing, disking) with mineral fertilizers was produce. The variation of main physical-chemical and agrochemical properties of soils was studied. A general tendency to increase of humus content in the investigated variants of the experiment with the sowing of Galega orientalis was noted. The amount of humus corresponds to the level of average and below average, and humus stocks of average values. Higher levels of humus content are recorded on variants 2 (without treatments), 5 (disking) with fertilization at a dose of $N_{45}P_{60}K_{60}$ and $N_{90}P_{120}K_{120}$ without treatment and option 9 (harrowing). Harrowing and discarding of soils with the use of mineral fertilizers led to increased mobility of humus and an increase in its composition of fulvic acid fractions. For the studied variants of experience in 2017 ($N_{45}P_{60}K_{60}$ + disking, $N_{90}P_{120}K_{120}$ + disking, $N_{90}P_{120}K_{120}$ + harrowing) characteristic fulvic-humatic and fulvic ($N_{45}P_{60}K_{60}$ + harrowing) type of humus formation. Various methods of agrotechnical processing in crops Galega orientalis caused changes in the composition of humic acids. When discarding the soil, significant changes were observed in the variant with the introduction of mineral fertilizers $N_{90}P_{120}K_{120}$ in which the share of «free» humic acids decreased from medium to low values. Harrowing of agrodarkhumus gley soils with fertilization $N_{45}P_{60}K_{60}$ caused increased mobility of humic acids, which led to an increase in the share of «free» humic acids to high values. Energy reserves of soils are calculated and energy efficiency of application of mineral fe

Положительная рецензия представлена М. В. Пивкиным, доктором биологических наук, ведущим научным сотрудником Тихоокеанского института биоорганической химии им. Г. Б. Елякова ДВО РАН.

Поверхностная обработка почв является одним из важных агротехнических приемов, влияющих на омоложение травостоя, протекание процессов гумусообразования и функционирование микрофлоры [1, 12]. Отмечено положительное влияние безотвального рыхления на протекание гумусообразовательного процесса в посевах ячменя и люпина, которое выражалось в возрастании коэффициента гумификации по сравнению с обычной вспашкой. Позитивное влияние оказывает безотвальная система обработки на увеличение урожайности озимой ржи и ячменя на дерново-подзолистых почвах Среднего Предуралья [7, 14], а также улучшение агрофизических показателей почв [13].

В ряде работ отмечено позитивное влияние посевов бобовых трав на повышение плодородия почв, используемых в системе земледелия Приморья [3, 10, 11]. В последние годы расширяются посевы козлятника восточного (Calega orientalis Lam), способного давать устойчивые урожаи без перезалужения в течение длительного времени. За годы интродукции в условиях Приморья козлятник восточный показал хорошую адаптацию к возделыванию в муссонном климате, стабильную высокую урожайность, зимостойкость [2]. Начаты исследования по улучшению его травостоев с использованием мелких обработок почв [9]. Козлятник восточный как фитомелиорант в одних случаях может заменять клевер и люцерну, а в других служить дополнением к ним, так как наряду с очевидными преимуществами (срок использования травостоя до 10 лет и более) достигает укосной спелости на 10-15 суток раньше этих трав, имеет высокую урожайность, что важно при создании зеленого конвейера. Calega orientalis отличается экологической пластичностью, адаптивностью, высокой продуктивностью и хорошими кормовыми качествами. Себестоимость кормовой единицы зеленой массы козлятника восточного в 3-4 раза ниже, чем у однолетних и некоторых многолетних трав. Между тем опытов по улучшению его травостоев и уровня плодородия почв с использованием поверхностной обработки в Приморье практически не проводилось.

Цель и методика исследований

Цель работы – изучение изменений в показателях гумусного состояния и энергозапасов почв при произрастании *Calega orientalis* при различных агротехнических приемах обработки (дискование, боронование).

Задачи исследований:

- 1) изучить влияние различных агротехнических приемов обработки почв в посевах *Calega orientalis* на основные физико-химические и агрохимические показатели:
- 2) исследовать их воздействие на гумусное состояние и энергозапасы почв;

3) рекомендовать наиболее эффективные приемы обработки почв, позитивно влияющие на произрастание *Calega orientalis*.

Объект исследований – агротемногумусовые глеевые почвы с генетическими горизонтами: PU -AU – G – Cg. Образцы отбирались в I декаде осени в 2016–2017 гг. на опытных полях Приморского научно-исследовательского института сельского хозяйства в условиях полевого опыта. Закладка полевых опытов была произведена в мае 2016 г. на многолетних травостоях Calega orientalis. Повторность опыта четырехкратная. Площадь каждой делянки – 100 м². Отбор почвенных образцов проводили в верхнем пахотном горизонте почв (0-20 см). При исследовании физико-химических и агрохимических свойств почв в работе применены общепринятые в почвоведении методы [8]. Фракционно-групповой состав гумуса определен по Кононовой-Бельчиковой. Энергозапасы почв, связанные с содержанием гумуса (Q_), рассчитаны по формуле, предложенной Д. С. Орловым, Л. А. Гришиной [6], запасы энергии минеральной части почв $(Q_{_{\scriptscriptstyle M}})$ рассчитаны по рекомендациям В. Р. Волобуева. Оценка гумусного состояния проведена по градациям, предложенным Д. С. Орловым с соавторами [5]. Энергетическая эффективность применения минеральных удобрений в посевах козлятника восточного рассчитана по методике, изложенной в работе В. Г. Минеева [4]. Статистическая обработка данных произведена с помощью программы Statistica.

Результаты исследований

Климат Приморского края характеризуется как резко континентальный с муссонными чертами. Годовое количество осадков варьирует в пределах 530–900 мм, основной объем выпадает в период вегетации растений (315–780 мм). Бывают годы и периоды, когда за сутки выпадает до 150 и более мм осадков. В этих случаях наступает переувлажнение и затопление полей. В 2017 г. фактическая температура превышала среднемноголетние показатели (табл. 1).

Осадков в указанный период было достаточно для нормального роста и развития культуры, однако их выпадение по времени распределялось неравномерно. В июле — августе сложились экстремальные условия (209, 274 мм), что превышает среднемноголетнее значение этого показателя в 2,5 раза и вызвало переувлажнение почв.

Как показали результаты исследований основных физико-химических и агрохимических показателей агротемногумусовых глеевых почв, для горизонта PU в условиях полевого опыта характерна, судя по параметрам актуальной кислотности (рНв), в основном слабокислая реакция среды. Показатели обменной кислотности (рНс) изменялись от слабокислых

Таблица 1

Метеорологические условия в период вегетации культуры в 2017 г. (данные метеостанции п. Тимирязевский)

Table

Weather conditions during the growing season of culture in 2017 (weather station data p. Timiryazevskiy)

Месяц <i>Month</i>	Декада Decade		Гемпература воздуха, t ${}^{\circ}\mathrm{C}$ Air temperature, t ${}^{\circ}\mathrm{C}$	Осадки, мм Precipitation, mm		
		2017	среднемноголетнее значение mean long-term values	2017	среднемноголетнее значение mean long-term values	
Апрель April	1	6,9	3,2	6,0	12,0	
	2	7,5	5,9	10,7	11,0	
	3	8,5	8,4	14,1	17,0	
	месяц month	7,6	5,8	30,8	40,0	
	1	12,7	10,5	1,3	12,0	
Май	2	13,6	11,8	27,8	18,0	
May	3	13,8	13,3	15,1	21,0	
	месяц month	13,4	11,9	44,2	51,0	
	1	13,7	14,6	37,9	27,0	
Итоли	2	16,3	16,0	16,5	31,0	
Июнь <i>June</i> .	3	18,7	17,2	76,6	23,0	
	месяц month	16,3	15,9	133,0	81,0	
	1	22,6	19,0	29,8	20,0	
Июль	2	22,7	20,1	76,4	31,0	
July	3	21,0	21,1	103,7	30,0	
	месяц month	22,1	20,1	209,9	90,0	
	1	22,5	21,4 259,4		46,0	
Август	2	21,6	21,2	0,6	43,0	
August	3	18,7	19,9	14,5	45,0	
mgusi	месяц month	20,8	20,8	274,5	134,0	
Сентябрь September	1	18,2	16,8	4,1	41,0	
	2	15,8	14,9	37,2	38,0	
	3	14,2	12,9	21,5	25,0	
	месяц month	16,0	14,9	62,8	104,0	
Октябрь October	1	10,8	10,6	25,2	21,0	
	2	5,4	6,8	7,6	14,0	
	3	5,0	3,7	5,0	17,0	
	месяц month	7,1	7,0	37,8	52,0	

до кислых значений (табл. 2). В 2017 г. в связи с активизацией процесса гумусонакопления прослеживалась закономерность к снижению параметров рНв и рНс во всех вариантах опыта с посевами *Calega orientalis*. Гидролитическая кислотность (Нг) была низкой.

Повышение Нг с низких до значительных величин установлено для вариантов опыта 1 (без обработки почв и внесения удобрений), 2 (внесение удобрений $N_{45}P_{60}K_{60}$ без обработки почв), 3 (внесение удобрений $N_{90}P_{120}K_{120}$ без обработки почв), а также при бороновании почв с внесением удобрений в дозе $N_{45}P_{60}K_{60}$. Для горизонта PU агротемногумусовых глеевых почв характерна повышенная и высо-

кая обеспеченность подвижными формами фосфора и калия, что связано с применением минеральных удобрений. Существенных изменений по годам в содержании данных элементов не установлено. Исключение составил вариант 1, где содержание фосфора и калия снижалось в 2017 г.: фосфора с высоких до повышенных, калия с очень высоких до средних значений. Вероятно, это обусловлено потреблением и выносом элементов с вегетативной массой растений.

По сравнению с 2016 г. в 2017 г. на исследуемых вариантах опыта с посевом козлятника восточного отмечена общая тенденция к повышению содержания гумуса (табл. 3). Количество гумуса соответствовало уровню средних и ниже средних, а запасы

Таблица 2

Показатели физико-химических и агрохимических свойств агротемногумусовых глеевых почв (горизонт РU) с посевами козлятника восточного при разных системах агротехнической обработки

> Indicators of physical-chemical and agrochemical properties of agrodarkhumus gley soil (PU) Calega orientalis crops under different agricultural systems processing

				ar systems processing			
Показатели <i>Indicators</i>							
рНв <i>рН</i> v	pHc pHs	Гидролитическая кислотность, м-экв/100 г почвы Hydrolytic acidity, m-EQ/100 g soil	P ₂ O ₅ , мг/100 г почвы (по Кирсанову) P ₂ O ₅ , mg/100 g soil (on Kirsanov)	K_2 О, мг/100 г почвы (по Масловой) K_2 О, mg/100 g soil (on Maslova)			
$\frac{6,40 \pm 0,11}{6,10 \pm 0,10}$	$\frac{5,30 \pm 0,14}{5,50 \pm 0,10}$	$4.88 \pm 0.66 \\ 6.25 \pm 0.75$	$\frac{12,98 \pm 0,21}{6,50 \pm 0,13}$	$\frac{31,40 \pm 0,40}{11,80 \pm 0,18}$			
$\frac{6,40 \pm 0,11}{6,10 \pm 0,10}$	$\frac{5,37 \pm 0,11}{5,10 \pm 0,10}$	$\frac{4,25 \pm 0,50}{6,25 \pm 0,75}$	$\frac{9,24 \pm 0,19}{14,00 \pm 0,28}$	$\frac{20,98 \pm 1,00}{18,70 \pm 0,28}$			
$\frac{6,89 \pm 0,01}{6,10 \pm 0,10}$	$\frac{6,19 \pm 0,20}{5,20 \pm 0,10}$	$\frac{2,32 \pm 0,07}{5,37 \pm 0,64}$	$\frac{9,24 \pm 0,19}{20,90 \pm 0,41}$	$\frac{43,30 \pm 0,90}{20,40 \pm 0,31}$			
$\frac{6,62 \pm 0,08}{6,40 \pm 0,10}$	$\frac{5,60 \pm 0,16}{5,00 \pm 0,10}$	$\frac{3,57 \pm 0,28}{3,26 \pm 0,39}$	$5.01 \pm 0.15 \\ 10.00 \pm 0.20$	$\frac{13,58 \pm 0,60}{14,20 \pm 0,21}$			
$\frac{6,82 \pm 0,05}{6,30 \pm 0,10}$	$\frac{5,92 \pm 0,02}{5,20 \pm 0,10}$	$2,86 \pm 0,14 \\ 4,14 \pm 0,50$	$\frac{10,00 \pm 0,19}{13,10 \pm 0,26}$	$\frac{14,70 \pm 0,30}{12,60 \pm 0,19}$			
$\frac{6,82 \pm 0,05}{6,50 \pm 0,10}$	$\frac{5,92 \pm 0,02}{5,50 \pm 0,10}$	$\frac{2,86 \pm 0,14}{3,56 \pm 0,43}$	$\frac{10,07 \pm 0,21}{21,00 \pm 0,42}$	$\frac{16,11 \pm 0,60}{14,90 \pm 0,22}$			
$\frac{6,64 \pm 0,10}{6,20 \pm 0,15}$	$\frac{5,65 \pm 0,22}{4,90 \pm 0,10}$	$3,62 \pm 0,72 \\ 4,92 \pm 0,59$	$6,50 \pm 0,19 \\ 5,10 \pm 0,10$	$\frac{15,97 \pm 0,30}{10,70 \pm 0,16}$			
$\frac{6,90 \pm 0,14}{6,00 \pm 0,10}$	$\frac{5,96 \pm 0,16}{5,10 \pm 0,10}$	$ \begin{array}{c} 2.32 \pm 0.07 \\ 5.37 \pm 0.64 \end{array} $	$\frac{11,30 \pm 0,17}{14,00 \pm 0,20}$	$\frac{14,56 \pm 0,30}{15,00 \pm 0,22}$			
$\frac{6,83 \pm 0,17}{6,40 \pm 0,10}$	$\frac{5,92 \pm 0,02}{5,50 \pm 0,10}$	$\frac{2,57 \pm 0,58}{4,14 \pm 0,50}$	$\frac{10,07 \pm 0,21}{21,00 \pm 0,42}$	$\frac{12,40 \pm 0,59}{15,00 \pm 0,30}$			
	$\begin{array}{c} 6.40 \pm 0.11 \\ 6.10 \pm 0.10 \\ \hline \\ 6.40 \pm 0.11 \\ 6.10 \pm 0.10 \\ \hline \\ 6.89 \pm 0.01 \\ 6.10 \pm 0.10 \\ \hline \\ 6.82 \pm 0.08 \\ 6.40 \pm 0.10 \\ \hline \\ 6.82 \pm 0.05 \\ 6.30 \pm 0.10 \\ \hline \\ 6.82 \pm 0.05 \\ 6.50 \pm 0.10 \\ \hline \\ 6.64 \pm 0.10 \\ 6.20 \pm 0.15 \\ \hline \\ 6.90 \pm 0.14 \\ 6.00 \pm 0.10 \\ \hline \\ 6.83 \pm 0.17 \\ 6.40 \pm 0.10 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pHB pHv pHc pHs Fuddon Multiplications (исистность, м-экв/100 г почвы Hydrolytic acidity, m-EQ/100 g soil P205, mr/100 г почвы Hydrolytic acidity, m-EQ/100 g soil P205, mg/100 g soil (in KupcaHoBy) P205, mg/100 g soil 6.40 ± 0.11 6,10 ± 0.10 5.30 ± 0.14 6,25 ± 0,75 4.88 ± 0.66 6,25 ± 0,75 12.98 ± 0.21 6,50 ± 0,13 6.40 ± 0.11 6,10 ± 0,10 5.37 ± 0.11 6,25 ± 0,75 4.25 ± 0.50 14,00 ± 0,28 9.24 ± 0.19 14,00 ± 0,28 6.89 ± 0.01 6,10 ± 0,10 6.19 ± 0.20 5,20 ± 0,10 2.32 ± 0.07 5,37 ± 0,64 9.24 ± 0.19 20,90 ± 0,41 6.62 ± 0.08 6,40 ± 0,10 5.60 ± 0.16 5,00 ± 0,10 3.57 ± 0.28 3,26 ± 0,39 5.01 ± 0.15 10,00 ± 0,20 6.82 ± 0.05 6,30 ± 0,10 5.92 ± 0.02 5,20 ± 0,10 2.86 ± 0.14 4,14 ± 0,50 10.00 ± 0.19 13,10 ± 0,26 6.82 ± 0.05 6,50 ± 0,10 5.92 ± 0.02 5,50 ± 0,10 2.86 ± 0.14 10,07 ± 0,21 21,00 ± 0,42 6.64 ± 0,10 6,20 ± 0,15 5.50 ± 0.10 3,56 ± 0,43 10.07 ± 0.21 21,00 ± 0,42 6.90 ± 0,14 6,00 ± 0,10 5.10 ± 0.10 5,37 ± 0,64 11.30 ± 0.17 14,00 ± 0,20 6.83 ± 0,17 5,92 ± 0,02 2.57 ± 0.58 10,07 ± 0,21			

Примечание: над чертой – данные 2016 г., под чертой – 2017 г.; M – среднее значение, \pm m – ошибка среднего Note: above the line – data in 2016, below the line – 2017; M – mean value, $\pm m$ – error of mean

гумуса – средних значений. Более высокие показате- занных с кальцием и снизилось с высоких до средли содержания гумуса зафиксированы на вариантах них показателей количество «свободных» ГК. На вас внесением удобрений в дозе $N_{45}P_{60}K_{60}$ и $N_{90}P_{120}K_{120}$ рианте 3 усилилась степень гумификации органичебез обработки почв (варианты 2, 3). Внесение удо- ского вещества, а тип гумусообразования изменился брений $N_{_{90}}P_{_{120}}K_{_{120}}$ без обработки почв (вариант 3) с фульватно-гуматного на гуматный. На варианте 2вызвало усиление подвижности гуминовых кислот. из-за снижения соотношения $C_{\Gamma K}$: $C_{\Phi K}$ тип гуму-Доля «свободных» гуминовых кислот (ГК) возросла са изменялся с гуматного на фульватно-гуматный, с низких до высоких, а связанных с кальцием снизилась с высоких до низких значений. На варианте 2 прослеживалась обратная тенденция: возросло до средних значений количество гуминовых кислот, свя-

а степень гумификации органического вещества была слабой. Вызвано это переувлажнением почв на данном варианте опыта. Проведение дискования на агротемногумусовых глеевых почвах с посевами

Таблица 3

Некоторые показатели гумусного состояния агротемногумусовых глеевых почв с посевами Calega orientalis при разных системах агротехнической обработки

Some indices of humus state of agrodarkhumus gley soils with crops of Galega orientalis under different agronomic systems processing

Guiegu orientaris under universal agronomic systems processing								
Вариант опыта Variant of experience Content humus,		Запасы гумуса, т/га Stock of humus, t / ha	Доля от суммы гуминовых кислот, % Part humus acids in % of their total content «свободных» связанных с гуминовых кислот кислот «free» humic acid associated with Ca²+		Сгк/Сфк C_{ha}/C_{fa}	Степень гумификации органического вещества, % Degree of humification organic matter, %		
1. Контроль без обработки и внесения удобрений I. Control without treatment and fertilization	6,03	150,7	39,9	60,1	<u>0,66</u>	16,0		
	5,17	109,6	52,7	47,3	0,84	15,9		
$2.\ N_{45}P_{60}K_{60}$, без обработки $2.\ N_{45}P_{60}K_{60}$, without treatment	<u>5,40</u>	150,1	61,2	38,8	1,55	<u>22,7</u>		
	6,10	124,4	58,7	41,2	1,17	17,9		
$3.\ N_{90}P_{120}K_{120}$, без обработки $3.\ N_{90}P_{120}K_{120}$, without treatment	<u>5,15</u>	87,5	23,7	76,3	1,43	18,8		
	7,14	138,5	70,8	29,2	1,75	20,7		
4. Дискование (контроль) 4. Disking (control)	4,40	103,8	74,8	25,2	1,25	20,5		
	4,97	105,4	21,9	78,1	1,77	20,7		
$5. N_{45} P_{60} K_{60} +$ дискование $5. N_{45} P_{60} K_{60} +$ disking	3,91	96,2	45,3	<u>54,7</u>	1,62	24,7		
	5,48	120,6	54,1	45,9	1,17	25,9		
$egin{array}{l} 6.\ N_{90}P_{120}K_{120} + \ \mathbf{дискованиe} \ 6.\ N_{90}P_{120}K_{120} + \ \mathbf{disking} \end{array}$	4,61	9 <u>8,6</u>	<u>50,1</u>	49,9	2,75	23,3		
	4,86	120,1	34,1	65,9	1,07	17,0		
7. Боронование (контроль) 7. Harrowing (control)	4,45	105,0	65,9	34,1	1,42	20,3		
	4,60	104,9	40,1	59,9	1,13	20,8		
$8. N_{45} P_{60} K_{60} + $ боронование $8. N_{45} P_{60} K_{60} + $ harrowing	<u>5,60</u>	114,2	<u>53,2</u>	46,8	1,50	<u>20,8</u>		
	5,79	123,9	71,3	28,7	0,69	14,2		
$9.\ N_{90}P_{120}K_{120}+ \\ $ боронование $9.\ N_{90}P_{120}K_{120}+ \\ $ <i>harrowing</i>	<u>5,05</u>	117,2	61,9	38,1	1,62	<u>20,7</u>		
	6,15	125,5	56,7	43,3	1,25	19,8		

Примечание: над чертой – средние данные 2016 г., под чертой – 2017 г.

Note: above the line - averages 2016, under the dash - 2017

козлятника восточного на варианте 5 (с внесением с дискованием почв (вариант 6) привело к снижеудобрений в дозе $N_{45}P_{60}K_{60}$) не вызвало существенных изменений в составе гуминовых кислот. В 2017 г. доля «свободных» и связанных с кальцием гуминовых кислот оставалась на уровне средних значений. Однако из-за возрастания фульвокислот в составе гумуса в 2017 г. тип гумуса изменился с гуматного на фульватно-гуматный. При этом степень гумификации органического вещества оставалась средней. Внесение удобрений в дозе $N_{90}P_{120}K_{120}$ на вариантах темногумусовых глеевых почв с посевами козлятни-

нию содержания фракций «свободных» гуминовых кислот со средних до низких показателей и возрастанию со средних до высоких значений содержания ГК, связанных с Са²⁺. В составе гумуса возросло количество фульвокислот. Тип гумусообразования изменился с чисто гуматного на фульватно-гуматный. Степень гумификации органического вещества снизилась со средней до слабой. Боронование агро-

Таблица 4

Изменение энергозапасов (Q_r, Q_M) в агротемногумусовых глеевых почвах при различной системе агротехнической обработки

Table 4

The change of stored energy (Q_h Q_m) in agrodarkhumus gley soils with different agronomic system

Варианты опыта	Энергозапасы (Q _{г1} Г) Stored energy (Qh) GJ/	Энергозапасы (Q _м) МДж/га в слое 0–20 см, 2017 г.	
Variant of experience	2016	2017	Stored energy (Qм) MJ/ha in the layer 0–20 cm, 2017
1. Контроль без обработки и внесения удобрений 1. Control without treatment and fertilization	3264,4	2373,5	4,33
$2.\ N_{45}P_{60}K_{60}$, без обработки $2.\ N_{45}P_{60}K_{60}$, without treatment	3250,6	2694,6	4,18
$3.\ N_{90}P_{120}K_{120}$, без обработки $3.\ N_{90}P_{120}K_{120}$, without treatment	1895,8	2999,4	3,92
4. Дискование (контроль) 4. Disking (control)	2248,6	2281,4	3,93
5. $N_{45}^{}P_{60}^{}K_{60}^{}+$ дискование 5. $N_{45}^{}P_{60}^{}K_{60}^{}+$ disking	2082,8	2610,5	4,13
$\left[egin{array}{ll} 6.\ N_{90} P_{120} K_{120} + \ \emph{дискованиe} \ 6.\ N_{90} P_{120} K_{120} + \ \emph{disking} \end{array} ight]$	2136,3	2209,8	4,32
7. Боронование (контроль) 7. Harrowing (control)	2274,3	2270,9	4,70
$8.\ N_{45} P_{60} K_{60} +$ боронование $8.\ N_{45} P_{60} K_{60} +$ harrowing	2473,6	2682,9	4,41
9. $N_{90}P_{120}K_{120}$ + боронование 9. $N_{90}P_{120}K_{120}$ + harrowing	2533,5	2716,8	4,22

Таблица 5 Энергетическая эффективность применения минеральных удобрений в посевах козлятника восточного Table 5 Energy efficiency of mineral fertilizers' application in crops Galega orientalis

			07			1.1		,
Вариант опыта Variant of experi- ence	Прибавка урожая от минеральных удобрений, ц/га The yield increase due to mineral fertilizers, C / ha		Количество энергии, накопленной в урожае, МДж (V_{g0}) The amount of energy stored in the crop, $MJ(V_{f0})$		Энергетические затраты на применение минеральных удобрений, МДж (A_0) Energy costs on the use of mineral fertilizers, $MJ(A_0)$		Энергетическая эффективность применения минеральных удобрений (η) ед. Energy efficiency of application of mineral fertilizers (η)	
	2016	2017	2016	2017	2016	2017	2016	2017
$2.\ N_{45}P_{60}K_{60}$, без обработки $2.\ N_{45}P_{60}K_{60}$, without treatment	18	14	6804	5292	5160	5160	1,32	1,02
$3.\ N_{90}P_{120}K_{120}$, без обработки $3.\ N_{90}P_{120}K_{120}$, without treatment	1	1	378	378	10 320	10 320	0,04	0,04

ка восточного не вызвало существенных изменений в типе гумусообразования. Тип гумуса фульватно-гуматный, степень гумификации органического вещества средняя. В 2017 г. среди ГК с высоких до средних значений снизилась доля «свободных» гуминовых кислот и увеличилось содержание ГК, связанных с Ca^{2+} , с низких до средних показателей. Внесение удобрений на вариантах с боронованием почв в посевах *Calega orientalis* вызвало изменение

в составе гумуса. Среди гумусовых кислот возросло содержание фульвокислот. Тип гумуса на варианте 8 ($N_{45}P_{60}K_{60}$ + боронование) изменился с фульватногуматного на фульватный, среди гуминовых кислот со средних до высоких значений возросла доля «свободных» ГК и снизилась до низких показателей доля ГК, связанных с Ca^{2+} . Тип гумусообразования на варианте 9 ($N_{90}P_{120}K_{120}$ + боронование) в горизонте PU агротемногумусовых глеевых почв изменился

с гуматного на фульватно-гуматный. В составе ГК лой до кислой. В 2017 г. на вариантах с дискованием возросла доля гуминовых кислот, связанных с Са²⁺, и боронованием почв с внесением минеральных удои сократилась с высоких до средних значений доля «свободных» ГК. пой до кислой. В 2017 г. на вариантах с дискованием и боронованием почв с внесением минеральных удофрений установлено повышение уровня гидролитической кислотности с низких до значительных вели-

В результате применения различных систем агротехнической обработки (дискование, боронование) с использованием минеральных удобрений прослеживались неоднозначные изменения в параметрах энергозапасов почв, связанных как с содержанием гумуса (Q_), так и кристаллической решетки минеральной части почв (Q,) (табл. 4). На вариантах опыта 1, 2, 7 установлено снижение энергозапасов О из-за снижения показателей плотности их сложения. При дисковании почв более высокие значения Q_г характерны для посевов козлятника восточного при внесении минеральных удобрений $N_{45}P_{60}K_{60}$ (вариант 5). Проведение боронования почв с внесением удобрений (варианты 8 и 9) увеличило содержание гумуса в горизонте РU, что значительное повысило параметры Q. Энергозапасы кристаллической решетки минеральной части почв значительно ниже по сравнению с Q_r . Более высокие показатели Q_{M} свойственны почвам вариантов 7, 8, 9 при бороновании почв. Это, на наш взгляд, связано с возрастанием удельной поверхности почв при ее измельчении, а также с увеличением в макроэлементном составе агротемногумусовых глеевых почв окислов железа и алюминия. Наряду с изучением изменения энергетических показателей почв (Q, Q) произведен расчет энергетической эффективности применения минеральных удобрений (η) (табл. 5).

К сожалению, неблагоприятные гидротермические условия в 2017 г. (большое количество осадков и связанное с ними переувлажнение почв) привели к снижению урожайности козлятника восточного на вариантах как с боронованием, так и с дискованием почв. Это сделало невозможным расчет п. Наибольшая прибавка урожая в посевах Calega orientalis зафиксирована на варианте 2 (без обработок почв с внесением удобрений $N_{45}P_{60}K_{60}$) (см. табл. 5). На варианте 3 (внесение удобрений $N_{90}P_{120}K_{120}$, без обработки), вероятно в связи с ингибированием поглощения азота клубеньковыми бактериями, из-за внесения более высоких доз минеральных удобрений урожайность была низкой. При этом энергетическая эффективность применения минеральных удобрений в посевах Calega orientalis на варианте 2 значительно превышала таковую на варианте 3. Это указывало на целесообразность применения более низких доз минеральных удобрений.

Выводы

1. Гумусообразование в условиях полевого опыта с посевами *Calega orientalis* происходило в условиях слабокислой реакции среды (рНв). Показатели обменной кислотности (рНс) изменялись от слабокис-

лой до кислой. В 2017 г. на вариантах с дискованием и боронованием почв с внесением минеральных удобрений установлено повышение уровня гидролитической кислотности с низких до значительных величин. Для горизонта PU агротемногумусовых глеевых почв из-за применения минеральных удобрений характерна повышенная и высокая обеспеченность подвижными формами фосфора и калия.

- 2. Отмечена общая тенденция к повышению содержания гумуса на вариантах с посевом *Calega orientalis*. Количество гумуса соответствовало уровню средних и ниже средних, а запасы гумуса средних значений. Более высокие показатели содержания гумуса зафиксированы на вариантах 2 и 3 (без обработок с внесением удобрений в дозе $N_{45}P_{60}K_{60}$ и $N_{90}P_{120}K_{120}$), 5 (дискование + $N_{45}P_{60}K_{60}$) и варианте 9 (боронование + $N_{90}P_{120}K_{120}$).
- 3. На вариантах без обработок почв внесение минеральных удобрений вызвало неоднозначное изменение в показателях гумусного состояния агротемногумусовых глеевых почв в горизонте PU. Внесение минеральных удобрений $N_{90}P_{120}K_{120}$ (вариант 3) привело к изменению типа гумусообразования с фульватно-гуматного на гуматный. Доля «свободных» гуминовых кислот возросла с низких до высоких значений, доля связанных с кальцием снизилась с высоких до низких. На варианте 2 $(N_{45}P_{60}K_{60})$ возросло до средних значений количество гуминовых кислот, связанных с кальцием, и снизилось с высоких до средних показателей количество «свободных» ГК, тип гумуса изменялся с гуматного на фульватно-гуматный.
- 4. Боронование и дискование почв с использованием минеральных удобрений привели к усилению подвижности гумуса и увеличению в его составе фракций фульвокислот. Для вариантов опыта 5, 6, 9 в 2017 г. характерен фульватно-гуматный и фульватный (вариант 8) тип гумусообразования. Произошли изменения в составе гуминовых кислот. При дисковании почв на варианте 6 ($N_{90}P_{120}K_{120}$) доля «свободных» гуминовых кислот снизилась со средних до низких значений. Проведение боронования почв с внесением удобрений $N_{45}P_{60}K_{60}$ (вариант 8) вызвало усиление подвижности гуминовых кислот, что привело к возрастанию доли «свободных» ГК до высоких значений.
- 5. Установлены различия в параметрах энергозапасов почв, связанных как с содержанием гумуса (Q_r) , так и кристаллической решетки минеральной части почв (Q_m) . Боронование почв с внесением удобрений увеличило содержание гумуса в горизонте PU, что повысило параметры Q_r , и явилось позитивным моментом в повышении потенциального плодородия почв. Из-за возрастания в макроэлементном составе агротемногумусовых глеевых почв окислов

свойственны вариантам с боронованием почв.

минеральных удобрений на варианте 2 значительно

железа и алюминия более высокие показатели Q, превышала таковую на варианте 3. Это указывало на целесообразность применения минеральных удо-6. Энергетическая эффективность применения брений в дозе $N_{45}P_{60}K_{60}$ в посевах *Calega orientalis*.

Литература

- 1. Горгулько Т. В. Микробиологическое состояние почвы при разных системах обработки // Современное экологическое состояние природной среды и научно-практические аспекты рационального природопользования : мат. І Междунар. науч.-практ. конф. Соленое Займище : Прикаспийский науч.-исследоват. ин-т аридного земледелия, 2016. С. 1805–1808.
- 2. Емельянов А. Н., Волошина Т. А. О семеноводстве козлятника восточного в Приморском крае // Кормопроизводство : науч.-произв. журн. 2013. № 7. С. 22–23.
- 3. Иншакова С. Н., Емельянов А. Н. Использование фитомелиорантов в земледелии Приморского края. Уссурийск: ПГСХА, 2016. 340 c.
- 4. Минеев В. Г. Агрохимия. М.: МГУ, 2006. 720 с.
- 5. Орлов Д. С., Бирюкова О. Н., Розанова М. С. Дополнительные показатели гумусного состояния почв и их генетических горизонтов // Почвоведение. 2004. № 8. С. 918–926.
- 6. Орлов Д. С., Гришина Л. А. Практикум по химии гумуса. M.: MГУ, 1981. 376 c.
- 7. Пегова Н. А., Холзаков В. М. Ресурсосберегающая система обработки дерново-подзолистой почвы // Аграрная наука Евро-Северо-Востока. 2015. № 1. С. 35–40.
- 8. Пансю М., Готеру Ж. Анализ почвы. СПб., 2014. 800 с.
- 9. Пуртова Л. Н., Щапова Л. Н., Емельянов А. Н., Босенко В. М. Влияние различных приемов агротехнической обработки на плодородие агротемногумусовых глеевых почв в условиях фитомелиоративного опыта // Вестник ДВО РАН. 2017. № 3. С. 62–67.
- 10. Пуртова Л. Н., Щапова Л. Н., Иншакова С. Н., Емельянов А. Н. Влияние фитомелиорации на плодородие агроабраземов Приморья // Доклады РАСХН. 2013. № 6. С. 50–52.
- 11. Пуртова Л. Н., Щапова Л. Н., Емельянов А. Н., Босенко В. М. Влияние различных фитомелиорантов на плодородие агрогенных почв Приморья // Вестник КрасГАУ. 2017. № 10. С. 121–129.
- 12. Пуртова Л. Н., Щапова Л. Н., Емельянов А. Н., Иншакова С. Н. Влияние фитомелиорации на гумусное состояние, микрофлору и агрофизические показатели агроабраземов Приморья // Аграрный вестник Урала. 2016. № 9. С. 51–56.
- 13. Сагалбеков У. М., Сагалбеков Е. У., Кусанова М. Е. Агрофизические показатели черноземов обыкновенных под многолетними травами // Почвоведение. 2013. № 10. С. 1234–1238.
- 14. Холзаков В. М., Эсенкулова О. В. Реализация принципов земледелия в современных условиях сельскохозяйственного производства // Реализация принципов земледелия в условиях современного сельскохозяйственного производства: мат. Всерос. науч.-практ. конф. (23–24 марта 2017 г.). Ижевск: Ижевская ГСХА, 2017. C. 16-26.

References

- 1. Gorgul'ko T. V. Microbiological condition of soil under different tillage systems // Modern ecological state of the natural environment and the scientific and practical aspects of environmental management: materials of I International scientific-practical conf. Salt Mine: Caspian research Institute of arid agriculture, 2016. P. 1805–1808.
- 2. Emelyanov A. N., Voloshina T. A. Seed of milk vetch East in the Primorsky territory // Forage production: scientific and production journal. 2013. No. 7. P. 22–23.
- 3. Inshakova S. N., Emelyanov A. N. Used of phytomelioration in agriculture of Primorsky Krai. Ussuriisk: PGSKHA, 2016. 340 p.
- 4. Mineev V. G. Agrochemistry. M.: MSU, 2006. 720 p.
- 5. Orlov D. S., Biryukova O. N., Rozanova M. S. Additional indices of humus state of soils and their genetic horizons // Soil science. 2004. No. 8. P. 918–926.
- 6. Orlov D. S., Grishina L. A. Workshop on the chemistry of humus. M.: MSU, 1981. 376 p.
- 7. Pegova N. A., Holzakov V. M. Resource-saving system for the processing of sod-podzolic soils // Agricultural science Euro-North-East. 2015. No. 1. P. 35–40.
- 8. Pansyu M., Guteru J. Analysis of the soil. SPb., 2014. 800 p.
- 9. Purtova L. N., Shchapova L. N., Emelyanov A. N., Bosenko V. M. Influence of various agrotechnical methods of treatment on fertility agrodarkhumus gley soils in the conditions of phytomeliorative experience // Bulletin of DVO RAS. 2017. No. 3. P. 62-67.

- 10. Purtova L. N., Shchapova, L. N., Inshakova S. N., Emelyanov A. N. Influence of phytomeliorative fertility agroarena of Primorye // Reports of the RAAS. 2013. No. 6. P. 50–52.
- 11. Purtova L. N., Shchapova L. N., Emelyanov A. N., Bosenko V. M. Effect of different phytomeliorants agrogenic on the fertility of the soils of the Primorye territory // Herald KrasGAU. 2017. No. 10. P. 121–129.
- 12. Purtova L. N., Shchapova L. N., Emelyanov A. N., Inshakova S. N. Influence of phytomeliorative on the humus condition of the soil, microflora and agrophysical properties of agrogenic abradive soil of the Primorye region // Agrarian Bulletin of the Urals. 2016. No. 9. P. 51–56.
- 13. Sagalbekov U. M., Sagalbekov U. E., Casanova M. E. Agrophysical indicators of ordinary Chernozem under perennial grasses // Soil science. 2013. No. 10. P. 1234–1238.
- 14. Holsakov V. M., Esenkulova O. V. Realization of the principles of agriculture adaptive farming modern implementation // Realization of principles agriculture in conditions of modern agriculture: materials of all-Russian scientific-practical conf. (March 23–24, 2017). Izhevsk: Izhevsk state agricultural academy, 2017. P. 16–26.