THE INFLUENCE OF CLIMATIC CHARACTERISTICS AND VALUES OF NDVI AT SOYBEAN YIELD (ON THE EXAMPLE OF THE DISTRICTS OF THE PRIMORSKIY REGION)
Abstract and keywords
Abstract (English):
Abstract. The relevance of research. Soybean is one of the key crops in world agriculture; in recent years, soybean production has been actively developing in the Russian Far East. It is necessary to predict yield to solve problems associated with soybean production, including the planning of sown areas and export operations. The purpose of this study is: to determine the factors affecting yield, to establish the relationship between these indicators and yield, and to evaluate the accuracy of the model. Research methods. We examined climatic features and remote Earth sensing indicators of Khankayskiy, Khorol’skiy, Mikhailovskiy and Oktyabr’skiy districts of the Primorskiy region since 2008 to 2018. Meteorological characteristics of territories and values of vegetation index were obtained using the Vega Science system. Integral coefficients were additionally calculated and mutually correlating indicators were excluded from the regression model. The main result of the study is a multiple regression model, where yield is considered as a dependent variable, and the independent variables are: the maximum weekly NDVI, hydrothermal coefficient, duration of the growing season, average annual humidity, and aggregated temperature of the upper soil layer. Mean absolute percentage error of the model is 11.0 % for the Khankayskiy district, 4.8 % for the Khorol’skiy district, 9.5 % for the Oktyabr’skiy district, and 8.9 % for the Mikhailovskiy district. Scientific novelty and practical relevance. A regression model, which predict soybean yield, was developed. In general, the proposed model can be used to predict soybean yield, as well as to make managerial decisions at the regional level.

Keywords:
soybean, yield, Primorskiy region, climatic characteristics, regression model, remote Earth sensing, NDVI
Text
Text (PDF): Read Download
References

1. Boyarskiy B. S., Hasegawa H., Lyude A. Demand for Russian soybean based on the needs of food industry in Japan // Scientific support of soybean: problems and prospects. Collection of scientific articles on materials of the International research and practice conference dedicated to the 50th anniversary of the foundation of the All-Russian Scientific Research Institute of Soybean. Blagoveshchensk, 2018. Pp. 36-41.

2. Gaso D. V., Berger A. G., Ciganda V. S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images // Computers and Electronics in Agriculture. 2019. Vol. 159. Pp. 75-83.

3. Aseeva T. A., Terehova M. V. Racional'nye priemy ispol'zovaniya sel'skohozyaystvennyh zemel' v Habarovskom krae pri vozdelyvanii soi // Dal'niy Vostok: problemy razvitiya arhitekturno-stroitel'nogo kompleksa. 2016. № 1. S. 168-171.

4. Proizvodstvo soi: prognoz na sezon 2017/18 [Elektronnyy resurs] // MNIAP. URL: http://mniap.rf/analytics/Proizvodstvo-soi-prognoz-na-sezon-2017-18 (data obrascheniya: 25.09.2019).

5. Minakir P. A. «Programmnaya» ekonomika: Dal'niy Vostok // Prostranstvennaya ekonomika. 2019. № 2. T. 15. S. 7-16.

6. Boyarskiy B. Application of NDVI Data to Analyse the Effects of Sowing Methods and Seeding Rates on Soybean Crop Yield // Journal of Engineering and Applied Sciences. 2019. Vol. 14. Pp. 4290-4294.

7. Onojeghuo A. O., G Blackburn. A., Huang J. Applications of satellite “hyper-sensing” in Chinese agriculture: Challenges and opportunities // International Journal of Applied Earth Observation and Geoinformation. 2018. Vol. 64. Pp. 62-86.

8. Bereza O. V., Strashnaya A. I., Lupyan E. A. O vozmozhnosti prognozirovaniya urozhaynosti ozimoy pshenicy v Srednem Povolzh'e na osnove kompleksirovaniya nazemnyh i sputnikovyh dannyh // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2015. № 1. T. 12. S. 18-30.

9. Buhovec A. G. [i dr.] Modelirovanie dinamiki vegetacionnogo indeksa NDVI ozimoy pshenicy v usloviyah CFO // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2018. T. 11. № 2. S. 186-199.

10. Panesh A. H., Calov G. V. Prognozirovanie urozhaynosti ozimoy pshenicy na osnove servisov geoinformacionnyh sistem // Vestnik AGU. 2017. № 4. S. 175-180.

11. Iizumi T., Shin Y., Kim W. Global crop yield forecasting using seasonal climate information from a multi-model ensemble // Climate Services. 2018. Vol. 11. Pp. 13-23.

12. Boyarskiy B. S., Hasegawa H., Lyude A. Application of NDVI in soybean analysis // Scientific support of soybean: problems and prospects. Collection of scientific articles on materials of the International research and practice conference dedicated to the 50th anniversary of the foundation of the All-Russian Scientific Research Institute of Soybean. Blagoveshchensk, 2018. Pp. 64-71.

13. Spivak L. F. [i dr.] Analiz rezul'tatov prognozirovaniya urozhaynosti yarovoy pshenicy na osnove vremennyh ryadov statisticheskih dannyh i integral'nyh indeksov vegetacii // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2015. № 2. T. 12. S. 173-182.

14. Storchak I. G., Shestakova E. O., Eroshenko F. V. Svyaz' urozhaynosti posevov ozimoy pshenicy s NDVI dlya otdel'nyh poley // Agrarnyy vestnik Urala. 2018. № 6. S. 64-68.

15. Balabaykin V. F., Elkin K. V. Vliyanie izmeneniya klimata na urozhaynost' zernovyh v Kostanayskoy oblasti // Agrarnyy vestnik Urala. 2014. № 11. S. 54-59.

16. De la Casaa A., Ovandoa G. G., Bressanini L. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot // ISPRS Journal of Photogrammetry and Remote Sensing. 2018. Vol. 146. Pp. 531-547.

17. Gorohova S. V. Nekotorye osobennosti formirovaniya mezoklimata na yuge Primorskogo kraya // Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2012. № 1. T. 14. S. 1441-1443.

18. Rosstat. Baza dannyh pokazateley municipal'nyh obrazovaniy [Elektronnyy resurs]. URL: https://www.gks.ru (data obrascheniya: 15.09.2019).

19. Tolpin V. A. [i dr.] Vozmozhnosti analiza sostoyaniya sel'skohozyaystvennoy rastitel'nosti s ispol'zovaniem sputnikovogo servisa «VEGA» // Optika atmosfery i okeana. 2014. № 7. T. 27. S. 581-586.

20. Yakushev V. P., Dubenok N. N., Lupyan E. A. Opyt primeneniya i perspektivy razvitiya tehnologiy distancionnogo zondirovaniya Zemli dlya sel'skogo hozyaystva // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2019. № 3. T. 16. S. 11-23.

Login or Create
* Forgot password?