INFRADIAN RHYTHMS OF INCREMENT DYNAMICS OF SHOOTS IN CLONES OF ALMOND WILLOW (SALIX TRIANDRA, SALICACEAE)
Abstract and keywords
Abstract (English):
Abstract. Purpose of research – harmonic analysis of the structure of seasonal dynamics of daily increment of shoots in almond willow (Salix triandra) clones. Research methodology and methods. Object is a model population created by cuttings of sibs-seedlings from the same family obtained by regular inbreeding over three generations. Material – growing long shoots. Experimental group: seven clones of one-year saplings from cuttings; 6-fold repetition. Control group – seedlings from the same family on their own roots of the fourth year of life. Methods: comparative morphological, chronobiological, numerical analysis of time series. Observations were made during the growing season of 2020. Results. The beginning of the growth of shoots – the end of the first decade of May. The maximum daily increase is in early summer (06.06…14.06). Further, the daily growth decreased unevenly until the end of August. Seasonal dynamics of daily increment is determined by the interaction of linear and nonlinear components. Linear components determine the seasonal trend of daily increment dynamics. They are approximated by the corresponding regression equations with different reliability. Nonlinear components determine the cyclical nature of the seasonal dynamics of daily increment. They are approximated by sums of harmonics with an oscillation period of 9–144 days with very high reliability. Scientific novelty. The cyclical nature of the seasonal dynamics of daily increment is determined by the interaction of biorhythms with different periods. Subannual biorhythms with a period of more than 48 days correct seasonal trends of daily increment. Infradian biorhythms with a period of 9...36 days determine the alternation of peaks and dips in the seasonal dynamics of daily increment. Biorhythms with a period of 29...36 days were synchronized in the experimental and control groups, but shifted in phase when comparing the experiment and control. Biorhythms with a period of 21...24 days are synchronized on all the researched shoots. Biorhythms with a period of 9…18 days are not synchronized, but their resulting fluctuations affect the dynamics of daily increment at the beginning and end of the growing season.

Keywords:
almond willow, Salix triandra, saplings from cuttings, one-year shoots, daily increment, seasonal dynamics, infradian biorhythms, synchronization of biorhythms
Text
Text (PDF): Read Download
References

1. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV // Botanical Journal of the Linnean Society. 2016. No. 181 (1). Pp. 1-20. DOI:https://doi.org/10.1111/boj.12385.

2. Wu J., Nyman T., Wang D.-C., et al. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): delimitation, biogeography, and reticulate evolution // BMC Evolutionary Biology. 2015. No. 15. Article number 31. DOI:https://doi.org/10.1186/s12862-015-0311-7.

3. Zhang J., Yuan H., Li Y, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz // Horticulture Research. 2020. No. 7. Article number 201. DOI:https://doi.org/10.1038/s41438-020-00424-8.

4. Epanchinceva O. V., Tishkina E. A., Mischihina Yu. D. Dinamika prirosta iv pri ispol'zovanii razlichnyh agrotehnicheskih priemov // Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2020. № 4 (84). S. 97-103. DOI:https://doi.org/10.37670/2073-0853-2020-84-4-97-103.

5. Fredette C., Labrecque M., Comeau Y., Brisson J. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix // Journal of Environmental Management. 2019. No. 246. Pp. 526-537. DOI:https://doi.org/10.1016/j.jenvman.2019.06.010.

6. Skvortsov A. K. Willows of Russia and adjacent countries. Taxonomical and geographical revision. Joensuu: University of Joensuu, 1999. 307 p.

7. Chen J. H., Sun H., Wen J., Yang Y.-P. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications // Taxon. 2010. No. 59 (1). Pp. 29-37. DOI:https://doi.org/10.1002/tax.591004.

8. Wu D., Wang Y., Zhang L., Dou L., Gao L. The complete chloroplast genome and phylogenetic analysis of Salix triandra from China // Mitochondrial DNA Part B. 2019. No. 4 (2). Pp. 3571-3572. DOI:https://doi.org/10.1080/23802359.2019.1674743.

9. Macalpine W. J., Shield I. F., Trybush S. O., Hayes C. M., Karp A. Overcoming barriers to crossing in willow (Salix spp.) breeding // Biomass and Energy Crops III. Aspects of Applied Biology. 2008. No. 90. Pp. 173-180.

10. Li W., Wu H., Li X., Chen Y., Yin T. Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix // Horticulture Research. 2020. No. 7. Article number 64. DOI:https://doi.org/10.1038/s41438-020-0289-1.

11. Noleto-Dias C., Wu Y., Bellisai, A., et al. Phenylalkanoid Glycosides (Non-Salicinoids) from Wood Chips of Salix triandra × dasyclados Hybrid Willow // Molecules. 2019. No. 24 (6). Article number 1152. DOI:https://doi.org/10.3390/molecules24061152.

12. Da Cunha A. C. B., Sabedot S., Sampaio C. H., Ramos C.G., da Silva A.R. Salix rubens and Salix triandra Species as Phytoremediators of Soil Contaminated with Petroleum-Derived Hydrocarbons // Water, Air & Soil Pollution. 2012. No. 223. Pp. 4723-4731. DOI:https://doi.org/10.1007/s11270-012-1228-z.

13. Sannikova E. G., Popova O. I., Kompanceva E. V. Iva trehtychinkovaya (Salix triandra L.) - perspektivy i vozmozhnosti ispol'zovaniya v medicine i farmacii // Farmaciya i farmakologiya. 2018. № 6 (4). S. 318-339. DOI:https://doi.org/10.19163/2307-9266-2018-6-4-318-339.

14. Kuzovkina Yu. A. Compilation of the checklist for cultivars of Salix L. (Willow) // HortScience. 2015. No. 50 (11). Pp. 1608-1609. DOI:https://doi.org/10.21273/HORTSCI.50.11.1608.

15. Verwijst T., Lundkvist A., Edelfeldt S., Forkman J., Nordh N.-E. Effects of clone and cutting traits on shoot emergence and early growth of willow // Biomass Bioenergy. 2012. No. 37. Pp. 257-264. DOI:https://doi.org/10.1016/j.biombioe.2011.12.004.

16. Edelfeldt S., Lundkvist A., Forkman J., Verwijst T. Effects of cutting length, orientation and planting depth on early willow shoot establishment // BioEnergy Research. 2015. No. 8. Pp. 796-806. DOI:https://doi.org/10.1007/s12155-014-9560-3.

17. Lüttge U., Hertel B. Diurnal and annual rhythms in trees // Trees. 2009. No. 23. Article number 683. DOI:https://doi.org/10.1007/s00468-009-0324-1.

18. Lloyd D. Oscillations, Synchrony and Deterministic Chaos // In: Progress in Botany, Lüttge U. et al. (eds). 2009. No. 70. Pp. 69-92. Springer-Verlag, Berlin, Heidelberg. DOI:https://doi.org/10.1007/978-3-540-68421-3_4.

19. Junttila O. Apical Growth Cessation and Shoot Tip Abscission in Salix. Physiologia Plantarum. 1976. No. 38 (4). Pp. 278-286. DOI:https://doi.org/10.1111/j.1399-3054.1976.tb04004.x.

20. Heide O. M. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species // Journal of Experimental Botany. 2011. No. 62 (15). Pp. 5397-5404. DOI:https://doi.org/10.1093/jxb/err213.

21. Critchfield W. B. Leaf dimorphism in Populus trichocarpa // American Journal of Botany. 1960. No. 47. Pp. 699-711. DOI:https://doi.org/10.1002/j.1537-2197.1960.tb07154.x.

22. Mikhalevskaya O. B. Growth rhythms at different stages of shoot morphogenesis in woody plants // Russian Journal of Developmental Biology. 2008. No. 39 (2). Pp. 65-72.

23. Diatroptov M. E., Panchelyuga V. A., Stankevich A. A. Dinamika smeny pervostepennogo mahovogo opereniya u vorob'inyh ptic, vozmozhnye faktory sinhronizacii // Biofizika. 2020. T. 65. № 1. S. 152-164. DOI:https://doi.org/10.31857/S0006302920010172.

24. Doffo G. N., Monteoliva S. E., Rodríguez M. E., Luquez V. M. C. Physiological responses to alternative flooding and drought stress episodes in two willow (Salix spp.) clones // Canadian Journal of Forest Research. 2017. No. 47. Pp. 174-182. DOI:https://doi.org/10.1139/cjfr-2016-0202.

25. Welc M., Lundkvist A., Verwijst T. Effects of propagule phenology (non-dormant versus dormant) and planting system (vertical versus horizontal) on growth performance of willow clones grown under different weeding regimes // BioEnergy Research. 2018. No. 11 (3). Pp. 703-714. DOI:https://doi.org/10.1007/s12155-018-9929-9.

26. Fuchilo Ya. D., Afonin A. A., Sbitnaya M. V. Selekcionnye osnovy vyvedeniya novyh sortov semeystva Ivovye (Salicaceae Mirb.) dlya sozdaniya energeticheskih plantaciy // Plant Varieties Studying and Protection. 2016. № 4 (33). S. 18-25.

27. Afonin A. A. Strukturnyy analiz ritmov razvitiya odnoletnih pobegov ivy trehtychinkovoy // Byulleten' nauki i praktiki. 2019. T. 5. № 1. S. 22-32. DOI:https://doi.org/10.5281/zenodo.2539541.

28. Afonin A. A. Polivariantnost' morfogeneza pobegov v klonah Salix triandra (Salicaceae) na fone periodichnosti livnevyh osadkov // Byulleten' nauki i praktiki. 2021. T. 7. № 1. S. 19-32. DOI:https://doi.org/10.33619/2414-2948/62/02.

29. Vasil'ev S. N. Shevaldin V. T. Garmonicheskiy analiz: uchebnoe posobie. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta, 2014. 80 s.

30. Afonin A. A. Hronobiologicheskie aspekty optimizacii pesticidnoy nagruzki v nasazhdeniyah ivy korzinochnoy (Salix viminalis L.) intensivnogo tipa // Vestnik Nizhnevartovskogo gosudarstvennogo universiteta. 2019. № 2. S. 43-50. DOI:https://doi.org/10.36906/2311-4444/19-2/06.

31. Singh R. K., Svystun T., AlDahmash B., Jönsson A. M., Bhalerao R. P. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective // New Phytologist. 2017. No. 213. Pp. 511-524. DOI:https://doi.org/10.1111/nph.14346.

32. Richards T. J., Karacic A., Apuli R. P., et al. Quantitative genetic architecture of adaptive phenology traits in the deciduous tree, Populus trichocarpa (Torr. and Gray) // Heredity. 2020. No. 125. Pp. 449-458. DOI:https://doi.org/10.1038/s41437-020-00363-z.

Login or Create
* Forgot password?