Abstract. The purpose of our research was to assess the influence of treatment with fulvic acid (FA) solutions (obtained from sapropel) on the physiological state, production process, and quality of salad crops under intensive controlled conditions. Research method. Treatment of plants with solutions of FA in various concentrations was carried out under controlled conditions using three different methods: soaking cress seeds (0.03-300mg/l); non-root treatment of vegetative plants (90–150 mg/l), when growing lettuce by a low – volume method with drip fertigation with Knop nutrient solution; adding a nutrient solution to the root medium (0.03-150 mg/l), when growing lettuce under nutrient film technique. Results. The most pronounced stimulating effect on plant growth was obtained after seeds treatment with FA solutions in concentrations of 0.3-150.0 mg/l, during non-root treatment of lettuce in concentrations of 0.3 and 150.0 mg/l, and when FA was introduced into the root medium at a concentration of 90.0 mg/l. It was suggested the lettuce growth under the action of FA was conditioned by enhancing plants metabolism and increased entry of nutrients to the aboveground organs of plants (during non – root processing)- and by nutrient uptake increasingas well as activation of the synthesis of photosynthetic pigments-chlorophylls and carotenoids (when a nutrient solution was add to the root medium. Scientific innovation. Under controlled conditions, a comprehensive assessment of the effect of FA solutions obtained from sapropel on the physiological state, production process, and quality of salad crops was carried out. The concentrations of fulvic acid solutions that had the most pronounced stimulating effect on the growth and development of lettuce plants in various types of treatment were determined. The specificity of the responses of lettuce plants to various types of treatment with FA solutions was revealed.
fulvic acid solutions, nutrient film technique, watercress, lettuce, seeds, soaking, non-root treatment, introduction to the root environment, growth, productivity, photosynthesis
1. Taha A. A., Omar M. M., Ghazy M. A. Effect of humic and fulvic acids on growth and yield of Lettuce Plant // Journal of Soil Science and Plant Physiologyyu. 2016. Vol. 7. No. 8. Pp. 517-522.
2. Kononihin A. S., Zherebker A. Ya., Kazachkov M. A., Grigor'ev A. S., Kostyukevich Yu. I., Pekov S. I., Bocharov K. V., Popov I. A., Perminova I. V., Nikolaev E. N. Issledovanie molekulyarnogo sostava guminovyh veschestv uglya i torfa pri pomoschi mass spektrometrii vysokogo razresheniya v usloviyah optimal'nogo elektroraspyleniya // Izvestiya RAN. Energetika. 2017. № 1. C. 107-114.
3. Pankratov D. A., Anuchina M. M., Konstantinov A. I., Perminova I. V. Analiz dinamiki vzaimodeystviya guminovyh veschestv uglya s metallicheskim zhelezom // Zhurnal fizicheskoy himii. 2019. T. 93. № 7. S. 992-1001.
4. Koshelev A. V., Derevyagina I. D., Golovkov V. F., Kaabak L. V., Epifanova O. A., Mamontov S. P., Eleev Yu. A., Gluhan E. N. Himicheskiy sostav guminovyh preparatov, poluchennyh iz torfa // Himiya i tehnologiya organicheskih veschestv. 2019. № 1 (9). S. 25-37.
5. Yang R., Li Z., Huang M., Luo N., Wen J., Zeng G. Characteristics of fulvic acid during coprecipitation and adsorption to iron oxides-copper aqueous system // Journal of Molecular Liquids. 2019. Vol. 274. Pp. 664-672.
6. Zanin L., Tomasi N., Cesco S., Varanini Z., Pinton R. Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants // Frontiers in Plant Science. 2019. Vol. 10. Article number 675.
7. Pamela C., Louise N., Joseph W. K. Agricultural uses of plant biostimulants // Plant Soil. 2014. Vol. 383. Pp. 3-41.
8. Lotfi R., Kalaji H. M., Valizadeh G. R., Behrozyar E. K., Hemati A., Gharavi-Kochebagh P., Ghassemi A. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions [Elektronnyy resurs] // Photosynthetica. 2018. Vol. 56. Pp. 962-970. URL: https://link.springer.com/content/pdf/10.1007/s11099-017-0745-9.pdf (data obrascheniya: 19.02.2021).
9. Nikitin S. N. Fotosinteticheskaya deyatel'nost' rasteniy v posevah i dinamika rostovyh processov pri primenenii biologicheskih preparatov // Uspehi sovremennogo estestvoznaniya. 2017. № 1. S. 33-38.
10. Anjum S. A., Wang L., Farooq M., Xue L., Ali S. Fulvic acid application improves the maize performance under wellwatered and drought conditions // Journal of Agronomy and Crop Science. 2011. Vol. 197. Pp. 409-417.
11. Braziene Z., Paltanavicius V., Avizienytė D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity // Environmental Research. 2021. Vol. 195. Article number 110824.
12. Wang Y., Yang R., Zheng J., Shen Z., Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.) // Ecotoxicology and Environmental Safety. 2019. Vol. 167. Pp. 10-19.
13. Silva R. R., Santos A. C. M., Carneiro J. S. S., Marques L. C., Rodrigues L. U., Faria A. J. G., Freitas G. A., Nascimento V. L. Biostimulants based on humic acids, amino acids and vitamins increase growth and quality of Lettuce seedlings // Journal of Agricultural Science. 2019. Vol. 11. No. 6. Pp. 235-246.
14. Suh H. Y., Yoo K. S., Sang G. S. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.) // Horticulture, Environment, and Biotechnology. 2014. Vol. 55. No. 6. Pp. 455-461.
15. Shahid M., Dumat C., Silvestre J., Pinelli E. Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant // Biology and Fertility of Soils. 2012. Vol. 48. Pp. 689-697.
16. Ali B., Wang B., Ali S., et al. 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under Cadmium stress in Brassica napus L. // Journal of Plant Growth Regulation. 2013. Vol. 32. No. 3. Pp. 604-614.
17. Tang W. W., Zeng G. M., Gong J. L., et al. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review // Science of the Total Environment. 2014. Vol. 468. Pp. 1014-1027.
18. Mityukov A. S., Rumyancev V. A., Kryukov L. N., Yaroshevich G. S. Sapropel' i perspektivy ego ispol'zovaniya v agrarnom sektore ekonomiki // Obschestvo. Sreda. Razvitie. 2016. № 2. S. 110-114.
19. Orlov D. S., Grishina L. A. Praktikum po himii gumusa. Moskva, 1981. 272 s.
20. Panova G. G., Udalova O. R., Kanash E. V., Galushko A. S., Kochetov A. A., Priyatkin N. S., Arkhipov M. V., Chernousov I. N. Fundamentals of physical modeling of “ideal” agroecosystems // Technical Physics. 2020. Vol. 65. No. 10. Pp. 1563-1569.
21. ISTA, International Rules for Seed Testing. 2016. DOI:https://doi.org/10.15258/istarules.
22. Udalova O. R., Pischik V. N., Mirskaya G. V., Vertebnyy V. E., Vorob'ev N. I., Homyakov Yu. V. Vliyanie biologicheski aktivnyh preparatov na produktivnost' i kachestvo plodov perca sladkogo v usloviyah intensivnoy svetokul'tury // Ovoschi Rossii. 2018. № 3 (41). S. 81-85.
23. Udalova O. R., Anikina L. M., Homyakov Yu. V., Vertebnyy V. G., Dubovickaya V. I., Panova G. G. Vliyanie tonkosloynyh analogov pochvy na produkcionnyy process rasteniy salata v intensivnoy svetokul'ture // Ovoschi Rossii. 2021. № 1. S. 33-38.
24. Rukovodstvo po metodam analiza kachestva i bezopasnosti pischevyh produktov. Moskva, 1998. 342 s.
25. Pischik V. N., Boycova L. V., Vorob'ev N. I. Vliyanie guminovyh veschestv na rasteniya i rizosfernye mikroorganizmy v rastitel'no-mikrobnyh sistemah // Agrohimiya. 2019. № 3. S. 85-95.
26. Jindo K., Martim S. A., Navarro E. C., Aguiar N. O., Canellas L. P. Root growth promotion by humic acids from composted and non-composted urban organic wastes // Plant and Soil. 2012. Vol. 353. Pp. 209-220.
27. Jardin P. Plant biostimulants: Definition, concept, main categories and Regulation // Scientia Horticulturae. 2015. Vol. 196. Pp. 3-14.