CHRONIC FISTULA TO RABBIT CECUM MICROBIOME STUDY
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The purpose of this work is to approve a device for studying the microbiome of the gastrointestinal tract of mammals. The study of the quantitative and qualitative composition of the digestive tract microbiota is one of the promising directions in metagenomics. Knowledge obtained about the organization of microbiocenosis genome, the determination of species composition and study of metabolic relationships between its representatives not only expand the understanding of its role in the process of evolution, speciation and breeding but also provide a scientifically substantiated basis for targeting changes in the microbiome to form a phenotype (optimization of feed bioconversion, increasing overall resistance, etc.). Scientific novelty. For the first time, the main characteristics of cellulolytic bacteria isolated from the chyme of the rabbit cecum were isolated, cultured and described through a chronic fistula. Methods. In order to carry out research aimed to study mammalian microbiome and its correction, the need arises to develop methods of obtaining microbiome samples from experimental animals. To obtain access to the chyme of the cecum in 7 rabbits for up to 3 months the chronic fistulas developed in Scientific Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding n. a. V. A. Afanas’ev were installed. No negative manifestations were observed in the animals after installation of the fistulas, no changes in appetite were detected, and complete healing of the skin wound was determined on the 9th day. Diagnostic laparotomies performed 3 months after fistula placement revealed no pathological processes in any of the studied animals. Results. Characteristics of cellulolytic bacteria of the rabbit cecum Butirivibrio fibrisolvens and Ruminococcus flavefaciens were studied. Data on their enzymatic effects on dietary components, fermentation products, digestion and formation of organic substances and chemical compounds are presented.

Keywords:
rabbit, microbiome, cellulosomes, fistula, chyme, Butirivibrio fibrisolvens, Ruminococcus flavefaciens
Text
Text (PDF): Read Download
References

1. Cotozzolo E., Cremonesi P., Curone G., et al. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits // Animals (Basel). 2020. No. 11 (1). Article number 31. DOI:https://doi.org/10.3390/ani11010031.

2. Arrazuria R., Pérez V., Molina E., Juste R. A., Khafipour E., Elguezabal N. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT) // Scientific Reports. 2018. No. 8 (1). Article number 14103. DOI:https://doi.org/10.1038/s41598-018-32484-1.

3. Bushtyreva I. O., Bushtyrev V. A., Barinova V. V. [i dr.] Mikrobiom zhenskoy reproduktivnoy sistemy: voprosov bol'she, chem otvetov // Glavnyy vrach Yuga Rossii. 2018. № 3 (62). S. 49-52.

4. Kolodny O., Callahan B. J., Douglas A. E. The role of the microbiome in host evolution // Philosophical Transactions of the Royal Society. V. Biological Sciences. 2020. No. 375 (1808). Article number 20190588. DOI:https://doi.org/10.1098/rstb.2019.0588.

5. Douglas-Escobar M., Elliott E., Neu J. Effect of intestinal microbial ecology on the developing brain // JAMA Pediatr. 2013. No. 167 (4). Pp. 374-379. DOI:https://doi.org/10.1001/jamapediatrics.2013.497.

6. Bercik P., Denou E., Collins J., et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice // Gastroenterology. 2011. No. 141 (2). Pp. 599-609. DOI:https://doi.org/10.1053/j.gastro.2011.04.052.

7. Velasco-Galilea M., Piles M., Viñas M., et al. Rabbit Microbiota Changes Throughout the Intestinal Tract // Frontiers in microbiology. 2018. No. 9. Article number 2144. DOI:https://doi.org/10.3389/fmicb.2018.02144.

8. Yang G., Zhao F., Tian H., Li J., Guo D. Effects of the dietary digestible fiber-to-starch ratio on pellet quality, growth and cecal microbiota of Angora rabbits // Asian-Australasian Journal of Animal Sciences. 2020. No. 33 (4). Pp. 623-633. DOI:https://doi.org/10.5713/ajas.19.0221.

9. Funosas G., Triadó-Margarit X., Castro F., et al. Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus) // Scientific reports. 2021. No. 11 (1). Article number 766. DOI:https://doi.org/10.1038/s41598-020-80782-4.

10. Ocasio-Vega C., Delgado R., Abad-Guamán R., et al. The effect of cellobiose on the health status of growing rabbits depends on the dietary level of soluble fiber // Journal of Animal Science. 2018. No. 96 (5). Pp. 1806-1817. DOI:https://doi.org/10.1093/jas/sky106.

11. Docenko A. S., Gusakov A. V., Rozhkova A. M., Volkov P. V., Korotkova O. G., Sinicyn A. P. Fermentativnyy gidroliz cellyulozy smesyami mutantnyh form cellyulaz Penicillium verruculosum // Vestnik Moskovskogo universiteta. Seriya 2. Himiya. 2018. T. 59. № 2. S. 138-143.

12. Krasteva P. V., Bernal-Bayard J., Travier L., et al. Insights into the structure and assembly of a bacterial cellulose secretion system // Nature Communications. 2017. No. 8 (1). Article number 2065. DOI:https://doi.org/10.1038/s41467-017-01523-2.

13. Li D.-W. Biology of Microfungi. Springer, Cham, 2016. 650 p. DOI:https://doi.org/10.1007/978-3-319-29137-6.

14. Zhivin O., Dassa B., Moraïs S., et al. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system // Biotechnology for Biofuels. 2017. No. 10. Article number 211. DOI:https://doi.org/10.1186/s13068-017-0898-6.

15. Duarte M., Viegas A., Alves V. D., et al. A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome // Journal of Biological Chemistry. 2021. No. 296. Article number 100552. DOI:https://doi.org/10.1016/j.jbc.2021.100552.

16. Milani C., Mangifesta M., Mancabelli L., et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life // The ISME Journal. 2017. No. 11 (12). Pp. 2834-2847. DOI:https://doi.org/10.1038/ismej.2017.138.

17. Oleskin A. V., Botvinko I. V., Cavkelova E. A. Kolonial'naya organizaciya i mezhkletochnaya kommunikaciya u mikroorganizmov // Mikrobiologiya. 2000. T. 69. № 3. S. 309-327.

18. Shenderov B. A. Normal'naya mikroflora i nekotorye voprosy mikroekologicheskoy toksikologii // Antibiotiki i medicinskaya biotehnologiya. 1987. T. 32. № 3 S. 38-41.

19. Birger M. O. Spravochnik po mikrobiologicheskim i virusologicheskim metodam issledovaniya. Moskva: Medicina, 1982. 464 s.

20. Labinskaya A. C. Chastnaya medicinskaya mikrobiologiya s tehnikoy mikrobiologicheskih issledovaniy. Moskva: Medicina, 2004. 576 s.

21. Labinskaya A. S., Kostyukova N. N., Ivanova S. M. Chastnaya medicinskaya mikrobiologiya i etiologicheskaya diagnostika infekciy. Moskva: BINOM, 2012. 1152 s.

22. Rodríguez Hernáez J., Cerón Cucchi M. E., Cravero S., et al. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid // Microbial Genomics. 2018. No. 4 (10).Article number e000216. DOI:https://doi.org/10.1099/mgen.0.000216.

23. Hagen L. H., Brooke C. G., Shaw C. A., et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber // The ISME Journal. 2021. No. 15. Pp. 421-434. DOI:https://doi.org/10.1038/s41396-020-00769-x.

24. Artegoitia V. M., Foote A. P., Lewis R. M., Freetly H. C. Rumen Fluid Metabolomics Analysis Associated with Feed Efficiency on Crossbred Steers // Scientific reports. 2017. No. 7 (1). Article number 2864. DOI:https://doi.org/10.1038/s41598-017-02856-0.

25. Semenova T. N., Korotkov D. Yu., Pervushin V. V. Vidovoy sostav simbiocenoza tolstogo kishechnika // Obrazovanie i nauka v Rossii i za rubezhom. 2019. № 15 (63). S. 20-29.

Login or Create
* Forgot password?