INTESTINAL MICROBIOCENOS OF RAINBOW TROUT IN THE CONDITIONS OF A CAGE FARM
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The rapid growth of the aquaculture industry using modern intensive farming methods has led to a number of problems related to water quality and the spread of infectious diseases in fish. The intestinal physiological microbiota of fish and the surrounding aquatic environment forming an ecosystem, the balance of which is a key factor in maintaining the health of aquaculture. However, optimizing the microbiota is still a challenging task due to a lack of studies about the dominant microorganisms in aquacultures and the influence of environmental factors on it. The aim of this work was to study the structure and taxonomic composition of the cultivatable bacterial gut community of the rainbow trout Oncorhynchus mykiss under the conditions of the “Yaroslavskaya Trout” cage farm. Methods. To identify the isolated strains and characterize the composition of common bacterial communities were used phenotypic and biochemical characteristics, as well as amplification and sequencing of 16S rRNA gene fragments and subsequent phylogenetic analysis. Scientific novelty. Data on the taxonomic diversity of the cultivated rainbow trout gut microbiome have been obtained. A comparative analysis of fish intestinal microbiocenoses and the surrounding aquatic environment was carried out. Results and practical significance. Gammaproteobacteria was the most abundant bacteria in the structure of the studied microbial communities. Bacteria of the genera Pseudomonas, Stenotrophomonas, and Aeromonas were found in the microbiome of both the rainbow trout intestines and the surrounding aquatic environment, which are opportunistic pathogens and can lead to an outbreak of bacterial infections under stressful conditions. However, studies have shown that the surrounding aquatic microbiome does not always reflect the microbiome of aquatic organisms. A comparative analysis of the freshwater microbiomes and the gut microbiome of rainbow trout revealed the ability of the host organism to concentrate beneficial probiotic microorganisms even under conditions of pathogenic presure. The resulting collection of microorganisms can be further used for screening potential probiotic cultures.

Keywords:
aquaculture Oncorhynchus mykiss, rainbow trout, microbiome, intestines, probiotics
Text
Publication text (PDF): Read Download
References

1. Lagutkina L. Yu., Ponomarev S. V. Organicheskaya akvakul'tura kak perspektivnoe napravlenie razvitiya rybohozyaystvennoy otrasli (obzor) // Sel'skohozyaystvennaya biologiya. 2018. № 53 (2). S. 326-336.

2. Tyschenko V. I., Terleckiy V. P. Oncorhynchus mykiss v akvakul'ture: biotehnologicheskie i geneticheskie osnovy razvedeniya i selekcii // Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2021. № 7 (109). S. 141-144.

3. Ziarati M., Zorriehzahra M. J., Hassantabar F., Mehrabi Z., Dhawan M., Sharun K., Emran T. B., Dhama K., Chaicumpa W., Shamsi S. Zoonotic diseases of fish and their prevention and control // Veterinary Quarterly. 2022. Vol. 42. Iss. 1. Pp. 95-118. DOI:https://doi.org/10.1080/01652176.2022.2080298.

4. Avdeeva E. V. Uslovno-patogennye bakterii ryb v estestvennyh i iskusstvennyh vodoemah Kaliningradskoy oblasti // Trudy VNIRO. 2017. № 167. S. 104-109.

5. Perry W. B., Lindsay E., Payne C. J., Brodie C., Kazlauskaite R. The role of the gut microbiome in sustainable teleost aquaculture // Proceedings of the Royal Society B. 2020. No. 287 (1926). Article number 20200184. DOI:https://doi.org/10.1098/rspb.2020.0184.

6. Santos L., Ramos F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem // International Journal of Antimicrobial Agents. 2018. No. 52 (2). Pp. 135-143. DOI:https://doi.org/10.1016/j.ijantimicag.2018.03.010.

7. Pérez-Pascual D., Vendrell-Fernández S., Audrain B., Bernal-Bayard J., Patiño-Navarrete R., Petit V., Rigaudeau D., Ghigo J. M. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection // PLoS pathogens. 2021. No. 17 (1). Article number e1009302. DOI:https://doi.org/10.1371/journal.ppat.1009302.

8. Ikeda-Ohtsubo W., Brugman S., Warden C. H., Rebel J. M. J., Folkerts G., Pieterse C. M. J. How can we define “optimal microbiota?”: A comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture // Frontiers in nutrition. 2018. No. 5 (90). DOI:https://doi.org/10.3389/fnut.2018.00090.

9. Vasemägi A., Visse M., Kisand V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish // MSphere. 2017. No. 2 (6). Article number e00418-17. DOI:https://doi.org/10.1128/mSphere.00418-17.

10. Xiong J. B., Nie L., Chen J. Current understanding on the roles of gut microbiota in fish disease and immunity // Zoological research. 2019. No. 40 (2). Pp. 70-76. DOI:https://doi.org/10.24272/j.issn.2095-8137.2018.069.

11. Butt R. L., Volkoff H. Gut microbiota and energy homeostasis in fish // Frontiers in Endocrinology (Lausanne). 2019. No. 10. Pp. 6-8. DOI:https://doi.org/10.3389/fendo.2019.00009.

12. Pérez-Pascual D., Pérez-Cobas A. E., Rigaudeau D., Rochat T., Bernardet J. F., Skiba-Cassy S., Marchand Y., Duchaud E., Ghigo J. M. Sustainable plant-based diets promote rainbow trout gut microbiota richness and do not alter resistance to bacterial infection // Animal microbiome. 2021. No. 3 (1). Pp. 1-13. DOI:https://doi.org/10.1186/s42523-021-00107-2.

13. Sehnal L., Brammer-Robbins E., Wormington A. M., Blaha L., Bisesi J., Larkin I., Martyniuk C. J., Simonin M., Adamovsky O. Microbiome composition and function in aquatic vertebrates: small organisms making big impacts on aquatic animal health // Frontiers in microbiology. 2021. No. 12. Article number 567408. DOI:https://doi.org/10.3389/fmicb.2021.567408.

14. Hoult Dzh., Krig N. Opredelitel' bakteriy Berdzhi: v 2-h tomah. Tom 1 / Pod red. Dzh. Houlta, N. Kriga ; per. s angl. pod red. akad. RAN G. A. Zavarzina. Izd. 9-e. Moskva: Mir, 1997. 429 s.

15. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees // Molecular Biology and Evolution. 1993. No. 10 (3). Pp. 512-526.

16. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets // Molecular Biology and Evolution. 2016. No. 33 (7). Pp. 1870-1874.

17. Letunic I., Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation // Bioinformatics. 2007. No. 23 (1). Pp. 127-128. DOI:https://doi.org/10.1093/nar/gkab301.

18. Kushnikova L. B., Anuarbekov S. M., Evseeva A. A. Limitiruyuschie faktory pri sadkovom vyraschivanii ryby v gornyh vodoemah Vostochnogo Kazahstana // Vestnik NGAU. 2018. № 1 (46). S. 127-135.

19. Morozova M. A., D'yachenko M. A., Abrosimova N. A., Chemisova O. S., Stepanova Yu. V., Parhomenko Yu. O. Mikroflora parenhimatoznyh organov u molodi karpovyh ryb v tovarnyh rybovodnyh hozyaystvah // Kompleksnye issledovaniya v rybohozyaystvennoy otrasli: materialy IV Mezhdunarodnoy nauchno-tehnicheskoy konferencii studentov, aspirantov i molodyh uchenyh. Vladivostok, 2018. S. 80-85.

20. Bisht A., Singh U. P., Pandey N. N. Comparative study of seasonal variation in bacterial flora concomitant with farm raised fingerlings of Cyprinus carpio at tarai region of Uttarakhand // Journal of Environmental Biology. 2014. No. 35 (2). Pp. 363-367.

21. Gomez J. A., Primm T. P. A Slimy Business: the Future of Fish Skin Microbiome Studies // Microbial Ecology. 2021. No. 82. Pp. 275-287. DOI:https://doi.org/10.1007/s00248-020-01648-w.

22. Tyagi A., Singh B., Billekallu Thammegowda N. K., Singh N. K. Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome // Archives of microbiology. 2019. No. 201 (3). Pp. 295-303. DOI:https://doi.org/10.1007/s00203-018-1615-y.

23. Gao Y. M., Zou K. S., Zhou L., Huang X. D., Li Y. Y., Gao X. Y., Chen X., Zhang X. Y. Deep insights into gut microbiota in four carnivorous coral reef fishes from the South China Sea // Microorganisms. 2020. No. 8 (3). Article number 426. DOI:https://doi.org/10.3390/microorganisms8030426.

24. Rangel F., Enes P., Gasco L., Gai F., Hausmann B., Berry D., Oliva-Teles A., Serra C. R., Pereira F. C. Differential Modulation of the European Sea Bass Gut Microbiota by Distinct Insect Meals // Frontiers in microbiology. 2022. No. 13. Article number 831034. DOI:https://doi.org/10.3389/fmicb.2022.831034.

25. Wu F., Chen B., Liu S., Xia X., Gao L., Zhang X., Pan Q. Effects of woody forages on biodiversity and bioactivity of aerobic culturable gut bacteria of tilapia (Oreochromis niloticus) // PLoS ONE. 2020. No. 15 (7). Article number e0235560. DOI:https://doi.org/10.1371/journal.pone.0235560.

26. Abd El-Rhman A. M., Khattab Y. A., Shalaby A. M. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus // Fish and Shellfish Immunology. 2009. No. 27 (2). Pp. 175-180. DOI:https://doi.org/10.1016/j.fsi.2009.03.020.

27. Sharifuzzaman S. M., Rahman H., Austin D. A., Austin B. Properties of probiotics Kocuria SM1 and Rhodococcus SM2 isolated from fish guts // Probiotics and Antimicrobial Proteins. 2018. No. 10 (3). Pp. 534-542. DOI:https://doi.org/10.1007/s12602-017-9290-x.

28. Poteshkina V. A., Uskova I. V. Enzymatic potential of the indigenous microbiota of the intestine of rainbow trout Parasalmo mykiss (= Oncorhynchus) // IOP Conference Series: Earth and Environmental Science. 2020. No. 539 (1). Article number 012200. DOI:https://doi.org/10.1088/1755-1315/539/1/012200.

29. Kononova S. V., Zinchenko D. V., Muranova T. A., Belova N. A., Miroshnikov A. I. Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed // Aquaculture International. 2019. No. 27 (2). Pp. 475-496. DOI:https://doi.org/10.1007/s10499-019-00341-1.

30. Terova G., Gini E., Gasco L., Moroni F., Antonini M., Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota // Journal of Animal Science and Biotechnology. 2021. No. 12 (30). DOI:https://doi.org/10.1186/s40104-021-00551-9.

31. Evdokimov E. G., Zaitseva Yu. V., Flerova E. A., Dokolin D. A., Zlobin I. V. Influence of conditions of the aquatic environment on the immuno-physiological status of the organism and the microbiome of the rainbow trout (Oncorhynchus mykiss) in cage farming // Veterinaria i kormlenie. 2022. No. 6. Pp. 28-32.

32. Simón R., Docando F., Nuñez-Ortiz N., Tafalla C., Díaz-Rosales P. Mechanisms used by probiotics to confer pathogen resistance to teleost fish // Frontiers in Immunology. 2021. No. 12. Article number 653025. DOI:https://doi.org/10.3390/microorganisms8030426.

33. Lazado C. C., Caipang C. M., Rajan B., Brinchmann M. F., Kiron V. Characterization of GP21 and GP12: Two Potential Probiotic Bacteria Isolated from the Gastrointestinal Tract of Atlantic Cod // Probiotics and Antimicrobial Proteins. 2010. No. 2 (2). Pp. 126-34. DOI:https://doi.org/10.1007/s12602-010-9041-8.

34. Wanka K. M., Damerau T., Costas B., Krueger A., Schulz C., Wuertz S. Isolation and characterization of native probiotics for fish farming // BMC Microbiology. 2018. No. 18 (1). Pp. 1-13. DOI:https://doi.org/10.1186/s12866-018-1260-2.

Login or Create
* Forgot password?