FEATURES OF FUNCTIONAL ACTIVITY OF LIPIDOME IN SUS SCROFA DOMESTICUS OOCYTES AFTER INTRAOVARIAN VITRIFICATION
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The creation of a cryobank of reproductive cells and tissues opens up the possibility of intensifying the introduction of innovative cellular reproductive technologies into the practice of husbandry, biomedicine, and veterinary medicine. The aim of the study was to evaluate the effects of silicon dimethylglycerolate (SDMG) on the morphology of gametes and lipidome of porcine oocytes after intraovarian vitrification (IOV). Methods. Fragments (15 × 20 mm) of porcine ovaries were subjected to vitrification, which were exposed to cryoprotective agents (CPA1 and CPA2) for 25 minutes and 15 minutes. Composition: CPA1: 7.5 % ethylene glycol (EG), 7.5 % dimethyl sulfoxide (DMSO), 65 % PBS, with 2M bovine serum albumin (BSA) and CPA2 – 2.0% EG, 20 % DMSO, 60 % PBS, 1M BSA, 0.5 mol/l sucrose. The effectiveness of using SDMG at the studied concentrations on the cryopreservation of bio objects was assessed by: the morphology of gametes and indicators of the functional activity of the lipidome (morphology, localization and fluorescence intensity of lipid droplets visualized with Nile Red vital dye) in oocytes. Results. 0.2 % SDMG does not induce apoptotic processes in granulosa cells, reduces the level of naked cells. Addition of 2 % SDMG into the composition of cryoprotective media, the proportion of gametes with signs of morphological degeneration decreases (from 31 % to 13 %, P < 0.001). SDMG contributes to an increase in the level of gametes with positive indicators of the functioning of lipid droplets: the proportion of gametes with diffuse localization increases (from 58 % to 83 %, P < 0.001); the level of cells with low fluorescence intensity of the Nile red/lipid droplets complex (from 16 % to 29 %, P < 0.05) and the proportion of gametes with lipid granules (47 % vs. 68 %, P < 0.005) increased. Scientific novelty. For the first time, the effects of SDMG on the morphology of female gametes, apoptotic processes in the chromatin of granulosa cells and the functional activity of the lipidome of porcine oocytes under the influence of ultralow temperatures at IOV were identified. The media for IOV of oocyte-cumulus complexes were modernized with the addition of 0.2 % or 2 % SDMG.

Keywords:
oocyte, pig, lipid droplets, DNA, Nile red, vitrification
Text
Publication text (PDF): Read Download
References

1. Shinkareckaya G. G. Genofond zhivotnyh: problema issledovaniya i sohraneniya // Obrazovanie i pravo. 2020. № 2. S. 128-137.

2. Bojic S., Murray A., Bentley B. L., Spindler R., Pawlik P., Cordeiro J. L., Bauer R., de Magalhães J. P. Winter is coming: the future of cryopreservation // BMC Biology. 2021. Vol. 24. No. 19 (1). DOI:https://doi.org/10.1186/s12915-021-00976-8.

3. Campos L. B., da Silva A. M., Praxedes E. C. G. Vitrification of collared peccary ovarian tissue using open or closed systems and different intracellular cryoprotectants // Cryobiology. 2019. No. 91. Pp. 77-83.

4. Amstislavsky S., Mokrousova V., Brusentsev E., Okotrub K., Comizzoli P. Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review // Biopreservation and biobanking. 2019. Vol. 17. No. 1. Pp. 76-83. DOI:https://doi.org/10.1089/bio.2018.0039.

5. Asl M. M., Rahbarghazi R., Beheshti R., Alihemmati A, Aliparasti M. R., Abedelahi A. Effects of Different Vitrification Solutions and Protocol on Follicular Ultrastructure and Revascularization of Autografted Mouse Ovarian Tissue // Cell Journal. 2021. Vol. 22. No. 4. Pp. 491-501. DOI:https://doi.org/10.22074/cellj.2021.6877.

6. Ekpo M. D., Xie J., Hu Y., Liu X., Liu F., Xiang J., Zhao R., Wang B., Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking // International Journal of Molecular Sciences. 2022. Vol. 27. No. 23 (5). Article number 2639. DOI:https://doi.org/10.3390/ijms23052639.

7. Sarkisyan N. G., Ron' G. I., Tuzankina I. A., Honina T. G., Larionov L. P., Simbircev A. S., Drozdova L. I., Timchenko A. S. Morfologicheskaya ocenka effektivnosti ispol'zovaniya farmakologicheskih kompoziciy na osnove krem¬niyorganicheskogo glicerogidrogelya // Immunologiya. 2017. T. 38. № 2. S. 91-96.

8. Shadrina E. V. Sintez i svoystva poliolatov kremniya i gidrogeley na ih osnove: avtoref. dis. kand. him. nauk. Ekaterinburg, 2011. 26 s.

9. Barkova A. S., Shurmanova E. I., Khonina T. G., Millstein I.M. Possibilities of using functional biologically active organosilicon compounds in veterinary practice // Agrarian Bulletin of the Urals. 2020. No. 11 (202). Pp. 53-58. DOI:https://doi.org/10.32417/1997-4868-2020-202-11-53-58.

10. Honina T. G., Larchenko E. Yu., Shadrina E. V., Ganebnyh I. N., Boyko A. A., Matochkina E. G., Kodess M. I., Chupahin O. N. Sostav, stroenie i svoystva farmakologicheski aktivnyh dimetilglicerolatov kremniya // Izvestiya Akademii nauk. Seriya himicheskaya. 2010. № 12. S. 2175-2180.

11. Stanislavovich T. I., Kuz'mina T. I., Molchanov A. V. Vliyanie intraovarial'noy vitrifikacii na pokazateli kriorezistentnosti oocit-kumulyusnyh kompleksov sviney // Voprosy veterinarno-pravovogo regulirovaniya v veterinarii. 2019. № 4. S. 65-70. DOI:https://doi.org/10.17238/issn2072-6023.2019.4.65.

12. Stanislavovich T. I., Kuz'mina T. I. Modifikaciya etapov tehnologii intraovarial'noy vitrifikacii oocitov Sus Scrofa Domesticus // Agrarnyy vestnik Urala. 2020. № 8 (199). S. 51-57. DOIhttps://doi.org/10.32417/1997-4868-2020-199-8-51-57.

13. Villaverde A. I., Fioratti E. G., Penitenti M., Ikoma M. R., Tsunemi M. H., Papa F. O., Lopes M. D. Cryoprotective effect of different glycerol concentrations on domestic cat spermatozoa // Theriogenology. 2013. Vol. 80. No. 7. Pp. 730-737. DOI:https://doi.org/10.1016/j.theriogenology.2013.06.010.

14. Zhang P. Q., Tan P. C., Gao Y. M., Zhang X. J., Xie Y., Zheng D. N., Zhou S. B., Li Q. F. The effect of glycerol as a cryoprotective agent in the cryopreservation of adipose tissue // Stem cell research & therapy. 2022. Vol. 13. Article number 152. DOI:https://doi.org/10.1186/s13287-022-02817-z.

15. Alimova A. D., Kundik Yu. V., Stanislavovich T. I., Kuz'mina T. I. Vliyanie dimetilglicerolata kremniya na zhiznesposobnost' kletok granulezy iz ovarial'nyh follikulov Sus Scrofa Domesticus // Voprosy normativno-pravovogo regulirovaniya v veterinarii. 2019. № 2. S. 61-63. DOI:https://doi.org/10.17238/issn2072-6023.2019.2.

16. Abazarikia A., Ariu F., Rasekhi M., Zhandi M., Ledda S. Distribution and size of lipid droplets in oocytes recovered from young lamb and adult ovine ovaries // Reproduction, Fertility and Development. 2020. Vol. 32. No. 11. Pp. 1022-1026. DOI:https://doi.org/10.1071/RD20035.

17. Pedroza G. H., Lanzon L. F., Rabaglino M. B., Walker W. L., Vahmani P., Denicol A. C. Exposure to non-esterified fatty acids in vitro results in changes in the ovarian and follicular environment in cattle // Animal Reproduction Science. 2022. Vol. 238. Article number 106937. DOI:https://doi.org/10.1016/j.anireprosci.2022.106937.

18. Dadarwal D., Adams G.P., Hyttel P., Brogliatti G.M., Caldwell S., Singh J. Organelle reorganization in bovine oocytes during dominant follicle growth and regression // Reproductive Biology and Endocrinology. 2015. Vol. 13. Article number 124. DOI:https://doi.org/10.1186/s12958-015-0122-0.

19. Novichkova D. A., Kuz'mina T. I., Honina T. G. Vozdeystvie kremniysoderzhaschih soedineniy na lipidom oocitov Sus scrofa domesticus // Tehnologii zhivyh sistem. 2018. T. 15. № 5. S. 58-63. DOI:https://doi.org/10.18127/j20700997-201805-08.

20. Olzmann J. A. Carvalho P. Dynamics and functions of lipid droplets // Nature Reviews Molecular Cell Biology. 2019. Vol. 20. No. 3. Pp. 137-155.

21. Okotrub K. A., Mokrousova V. I., Amstislavsky S. Y., Surovtsev N. V. Lipid Droplet Phase Transition in Freezing Cat Embryos and Oocytes Probed by Raman Spectroscopy // Biophysical Journal. 2018. Vol. 7. No. 115 (3). Pp. 577-587. DOI:https://doi.org/10.1016/j.bpj.2018.06.019.

22. Mokrousova V. I., Okotrub K. A., Amstislavsky S. Y., Surovtsev N. V. Raman spectroscopy evidence of lipid separation in domestic cat oocytes during freezing // Cryobiology. 2020. Vol. 95. Pp. 177-182. DOI:https://doi.org/10.1016/j.cryobiol.2020.03.005

23. Fu X.-W., Shi W.-Q., Zhang Q.-J., Zhao X.-M., Yan Ch. L., Hou Y.-P., Zhou G.-B., Fan Zhi-Q., Suo L., Wusiman Ab., Wang Y.-P., Zhu Shi-En. Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes // Animal reproduction science. 2008. Vol. 115. Pp. 158-168. DOI:https://doi.org/10.1016/j.anireprosci.2008.12.002.

24. Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes // Cryobiology. 1985. Vol. 22. No. 2. Pp. 128-146. DOI:https://doi.org/10.1016/0011-2240(85)90167-1.

25. Romek M., Gajda B., Krzysztofowicz E., Kepczynski M., Smorag Z. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe // Theriogenology. 2011. Vol. 75 (1). Pp. 42-54. DOI:https://doi.org/10.1016/j.theriogenology.2010.06.040.

26. McEvoy T., Coull G., Broadbent P., Hutchinson J., Speake B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida // Reproduction. 2000. Vol. 118. No. 1. Pp. 163-170.

Login or Create
* Forgot password?