Yekaterinburg, Ekaterinburg, Russian Federation
Abstract. To preserve biological diversity, it is necessary to determine the genetic structure of species populations, because this gives the most complete picture of the manifestation of polymorphism and makes it possible to detect genetically and phenotypically distinct subspecies. The information obtained will help determine the optimal habitat and protection conditions for endangered and farmed species. The purpose of research is to conduct an allozyme analysis of 10 populations of P. sylvestris L. 2 of the physiographic countries of Yakutia and the Amur region. Results. An allozyme analysis revealed less polymorphism and the most drastic differentiation of the Amur region populations (at the level of geographic race) from Yakutia populations, subdivided from each other at the level of geographical populations. Significant differences are shown between the populations of Yakutia and Amur Region according to the distances of Mahalanobis, calculated according to 19 signs of cones. A positive linear relationship was obtained between the distances of Mahalanobis (D2) and the genetic distances of Ney (DN78) (R2 = 0.4159). Scientific novelty. A dominant role in the origin of the Yakut populations of P. sylvestris of three Siberian group-gradual fellings (GGF) - Tynda, Romanovka, Irkutsk and a decrease in the genetic similarity of the GGF as they move away from Yakutia were found.
Yakutia, Amur region, P. sylvestris, population, geographical differentiation, genetic distance, Mahalanobis’ distances
1. Calleja-Rodriguez A. et al. Analysis of phenotypic-and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design // Journal of Theoretical Biology. 2019. Vol. 462. Pp. 283-292. DOI:https://doi.org/10.1016/j.jtbi.2018.11.007.
2. Korshykov I. I. et al. Genetic variability of maternal plants and embryos of their seeds in the populations of Pinus kochiana Klotzsch ex Koch in Crimea // Cytology and Genetics. 2016. Vol. 50. No. 2. Pp. 110-115. DOI:https://doi.org/10.3103/S0095452716020079.
3. Sannikov S. N., Egorov E. V. Alternative ways of Pinus sylvestris L. migration from Southern Siberia to Europe and Asia Minor // Biology Bulletin. 2015. Vol. 42. No. 5. Pp. 387-393. DOI:https://doi.org/10.1134/S1062359015050118.
4. Semerikov V. L. et al. Development of new mitochondrial DNA markers in Scots pine (Pinus sylvestris L.) for population and phylogeographic studies // Russian journal of genetics. 2015. Vol. 51. No. 12. Pp. 1199-1203. DOI:https://doi.org/10.1134/S1022795415120108.
5. Vidyakin A. I. et al. Genetic variation, population structure, and differentiation in scots pine (Pinus sylvestris L.) from the northeast of the Russian plain as inferred from the molecular genetic analysis data // Russian journal of genetics. 2015. Vol. 51. No. 12. Pp. 1213-1220. DOI:https://doi.org/10.1134/S1022795415120133.
6. Sannikov S. N., Petrova I. V. Filogenogeografiya i genotaksonomiya populyaciy vida Pinus sylvestris L. // Ekologiya. 2012. № 4. S. 252-260. DOI:https://doi.org/10.1134/S1067413612040145.
7. Sannikov S. N., Petrova I. V. Differenciaciya populyaciy sosny obyknovennoy. Ekaterinburg: UrO RAN, 2003. 247 s.
8. Putenihin V. P. Populyacionnaya struktura i sohranenie genofonda hvoynyh vidov na Urale: avtoref. dis. … d-ra biol. nauk: 06.03.01. Krasnoyarsk, 2000. 48 s.
9. Pravdin L. F. Sosna obyknovennaya. Izmenchivost', vnutrividovaya sistematika i selekciya. Moskva: Nauka, 1964. 161 s.
10. Sannikov S. N. et al. The forecast of fire impact on Pinus sylvestris renewal in southwestern Siberia //Journal of Forestry Research. 2021. Vol. 32. No. 5. Pp. 1911-1919. DOI:https://doi.org/10.1007/s11676-020-01260-1.
11. Santini F. et al. Morpho-physiological variability of Pinus nigra populations reveals climate-driven local adaptation but weak water use differentiation // Environmental and Experimental Botany. 2019. Vol. 166. Article number 103828. Pp. 1--36. DOI:https://doi.org/10.1016/j.envexpbot.2019.103828.
12. Olsson S. et al. Evolutionary relevance of lineages in the European black pine (Pinus nigra) in the transcriptomic era // Tree Genetics & Genomes. 2020. Vol. 16. No. 2. Pp. 1-10. DOI:https://doi.org/10.1007/s11295-020-1424-8.
13. Urbaniak L. et al. Genetic resources of relict populations of Pinus sylvestris (L.) in Western Carpathians assessed by chloroplast microsatellites // Biologia. 2019. Vol. 74. No. 9. Pp. 1077-1086. DOI:https://doi.org/10.2478/s11756-019-00255-6.
14. Pyhäjärvi T., Kujala S. T., Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris // Evolutionary Applications. 2020. Vol. 13. No. 1. Pp. 1-67. DOI:https://doi.org/10.1111/eva.12809.
15. Vasilyeva Y. et al. Genetic Structure, Differentiation and Originality of Pinus sylvestris L. Populations in the East of the East European Plain // Forests. 2021. Vol. 12. No. 8 (999). Pp. 1-11. DOI:https://doi.org/10.3390/f12080999.
16. Șofletea N. et al. Genetic diversity and spatial genetic structure in isolated scots pine (Pinus sylvestris L.) populations native to eastern and southern carpathians // Forests. 2020. Vol. 11. No. 10 (1047). Pp. 1-15. DOI:https://doi.org/10.3390/f11101047.
17. Przybylski P. et al. Conservation of Genetic Diversity of Scots Pine (Pinus sylvestris L.) in a Central European National Park Based on cpDNA Studies // Diversity. 2022. Vol. 14. No. 2 (93). Pp. 1-11. DOI:https://doi.org/10.3390/d14020093.
18. Yanbaev Y. et al. Gene pool of Scots pine (Pinus sylvestris L.) under reforestation in extreme environment // Wood Research. 2020. Vol. 65. Pp. 459-470. DOI:https://doi.org/10.37763/wr.1336-4561/65.3.459470.
19. Przybylski P. et al. Relationships between Some Biodiversity Indicators and Crown Damage of Pinus sylvestris L. in Natural Old Growth Pine Forests // Sustainability. 2021. Vol. 13. No. 3 (1239). Pp. 1-14. DOI:https://doi.org/10.3390/su13031239.
20. González Díaz P. Development and maintenance of genetic diversity in Scots pine, Pinus sylvestris (L.). UK: University of Stirling, 2018. 216 p.
21. Sokolov A. I. [i dr.] Sohrannost' i rost kul'tur sosny, sozdannyh posadochnym materialom s zakrytoy kornevoy sistemoy v usloviyah Karelii // Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2015. № 6 (348). S. 46-56.
22. Pinus sylvestris [e-resource] // The Gymnosperm database. URL: https://www.conifers.org/pi/Pinus_sylvestris.php (date of reference: 20.08.2022).
23. Kormutak A. et al. Artificial hybridization of Pinus sylvestris L. and Pinus mugo Turra // Acta Biologica Cracoviensia Series Botanica. 2005. Vol. 47. No. 1. Pp. 129-134.
24. Orlova L. V. O sosne pogrebal'noy (Pinus funebris Kom., Pinaceae) // Turczaninowia. 1999. T. 2. №. 2. S. 41-45.
25. Lehtiö H. Effect of air pollution on the volatile oil in needles of Scots pine (Pinus sylvestris L.) // Silva Fennica. 1981. Vol. 15. No. 2. Pp. 122-129.
26. Vidyakin A. I. Feny lesnyh drevesnyh rasteniy: vydelenie, masshtabirovanie i ispol'zovanie v populyacionnyh issledovaniyah (na primere Pinus sylvestris L.) // Ekologiya. 2001. № 3. S. 197-202.
27. Vidyakin A. I. Populyacionnaya struktura sosny obyknovennoy na vostoke evropeyskoy chasti Rossii: avtoref. dis. ... d-ra biol. nauk: 03.00.16. Ekaterinburg, 2004. 48 s.
28. Milyutin L. I. O vydelenii fenov razlichnogo masshtaba v populyaciyah drevesnyh rasteniy // Fenetika prirodnyh populyaciy: sbornik materialov III Vsesoyuznogo soveschaniya. Moskva, 1988. S. 92-99.
29. Putenihin V. P. Izuchenie populyacionnoy struktury i sohranenie genofonda listvennicy Sukacheva na Yuzhnom Urale // Lesnaya genetika, selekciya i fiziologiya drevesnyh rasteniy: materialy mezhdunarodnogo simpoziuma. Moskva, 1989. S. 111-112.
30. Korochkin L. I., Serov O. L., Pudovkin A. I. Genetika izofermentov. Moskva: Nauka, 1977. 275 s.
31. Cherepanova O. E., Petrova I. V., Sannikov S. N. Izuchenie allozimnoy differenciacii populyaciy Calluna vulgaris (L.) Hull // Sovremennye metody i podhody v zaschite rasteniy: Materialy Vserossiyskoy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem. Ekaterinburg, 2020. S. 256-257.
32. Sannikov S. N. et al. The Hypothesis about the Lofoten Pleistocene Refugium for Pinus sylvestris L. // Russian Journal of Ecology. 2019. Vol. 50. No. 3. Pp. 218-226. DOI:https://doi.org/10.1134/S1067413619030123.
33. Semerikov V. L. [i dr.] Elektroforeticheskaya izmenchivost' belkov hvoi sosny obyknovennoy Pinus sylvestris L // Genetika. 1991. T. 27. № 9. S. 1590-1596.
34. Mollaeva M. Z. et al. Genetic differentiation of the Scots pine (Pinus sylvestris L.) populations along the altitudinal gradient in the Central Caucasus (within Kabardino-Balkaria) // AIP Conference Proceedings. 2019. Vol. 2063. No. 1. Article number 030014. DOI:https://doi.org/10.1063/1.5087322.
35. Sannikov S. N. [i dr.] Poisk i vyyavlenie sistemy pleystocenovyh refugiumov vida Pinus sylvestris L. // Ekologiya. 2020. № 3. S. 181-189. DOI:https://doi.org/10.31857/S0367059720030130.
36. Nei M. Estimation of average heterozygosis and genetic distance from a small number of individuals // Genetics. 1978. Vol. 89. Pp. 583-590. DOI:https://doi.org/10.1093/genetics/89.3.583.
37. Sannikov S. N. et al. Gradient genogeographic analysis of Pinus sylvestris L. populations in Europe // Russian Journal of Ecology. 2005. Vol. 36. No. 6. Pp. 377-382. DOI:https://doi.org/10.1007/s11184-005-0089-8.
38. Sannikov S. N. et al. Origin of the Atlantic Azorean insular population of Calluna vulgaris (L.) Hull // Current Plant Biology. 2019. Vol. 18. No. Pp. 1-5. Article number 100108. DOI:https://doi.org/10.1016/j.cpb.2019.100108.
39. Swofford D. L., Selander R. B. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetic and systematic // Heredity. 1981. Vol. 72. Pp. 281-283. DOI:https://doi.org/10.1093/oxfordjournals.jhered.a109497.
40. Sneath P. H., Sokal R. R. Numerical taxonomy. San Francisco: W.H. Freeman and Co., 1973. 573 p.