PERSPECTIVE STRATEGY OF USING MOLECULAR MARKERS IN BREEDING OF BETA VULGARIS L. (REVIEW)
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. Aim of the investigations is to study, summarize and analyze domestic and foreign literature concerning interaction of molecular genetics and classical sugar beet breeding for improvement of resistance to biotic and abiotic stresses. The problems are: 1) to analyze a current state of molecular-genetic investigations in domestic and foreign literature; 2) to study problems of marker-oriented breeding; 3) to estimate development prospects of sugar beet molecular research in Russian Federation. Methods. Analytical methods to inspect and handle information from international databases (PubMed, NCBI, and Academy Google) have been used to study modern strategy of molecular-genetic marking. Results. Use of DNA-technologies is an important part of modern breeding of agricultural crops. There have been discussed the research data permitting to get a more comprehensive idea of current state of sugar beet molecular genetics and breeding that is necessary to work out programs of their further development. There have been presented the results of foreign authors’ experiments and our own investigations on determining DNA-markers to study genetical polymorphism of sugar beet breeding material, select parent pairs for hybridization, identify genes of resistance to bolting, select breeding material with genes of resistance to biotic (Fusarium spp., nematodes, rhizomania) and abiotic stressors (salinization, drought, heavy metals). Now, wide-scale studies on using molecular-genetic markers in sugar beet breeding process have been carried out by Federal State Budgetary Scientific Institution “The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar”. Use of molecular markers is one of the basic methods in plant breeding because of their general allocation throughout a genome and practical universality of application. In the article, advisability to use actual methods of sugar beet genome analysis employing DNA-markers in breeding process is considered. Scientific novelty involves estimation of the current state of Beta vulgaris L. molecular-genetic investigations in Russian Federation and abroad and their use in the crop breeding process.

Keywords:
sugar beet, marker-mediated breeding, cytoplasmic male sterility, SSR-loci, the PCR-analysis, SNP, primers, hybrids
Text
Text (PDF): Read Download
References

1. Kornienko A. V., Butorina A. K. Genetika i selekciya saharnoy svekly Beta vulgaris L. Voronezh: Voronezhskiy CNTI, 2012. 391 s.

2. Fedulova T. P., Fedorin D. N. Ispol'zovanie PCR-analiza dlya vyyavleniya geneticheskogo polimorfizma sortotipov svekly korneplodnoy Veta vulgaris L. // Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki. 2012. № 3 (122). S. 94-99.

3. Hlestkina E. K. Molekulyarnye markery v geneticheskih issledovaniyah i v selekcii // Vavilovskiy zhurnal genetiki i selekcii. 2013. T. 17. № 4 (2). S. 1044-1054

4. Smulders M., Esselink G., Danny G., Riek J., Vosman B. Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers // BMC Genetics. 2010. No. 11. Article number 41. DOI:https://doi.org/10.1186/1471-2156-11-41.

5. Simko I., Eujayl I., van Hintum T. J. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations // Plant Science. 2012. No. 184. Pp. 54-62. DOI:https://doi.org/10.1016/j.plantsci.2011.12.009.

6. Chesnokov Yu. V. Geneticheskie markery: sravnitel'naya klassifikaciya molekulyarnyh markerov // Ovoschi Rossii. 2018. № 3 (41). S. 11-15.

7. Kanukova K. R., Gazaev I. H., Sabanchieva L. K., Bogotova Z. I., Appaev S. P. DNK-markery v rastenievodstve // Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN. 2019. № 6 (92). S. 221-232.

8. Sandhu K., Sarao K., Meenakhsi G., Uppal S., Pritpal S., Satveer K., Jaspreet K. Profiling of sugar beet genotypes for agronomical, sugar quality and forage traits and their genetic diversity analysis using SSR markers // Electronic Journal of Plant Breeding. 2016. No. 7. Pp. 253-266. DOI:https://doi.org/10.5958/0975-928X.2016.00033.8.

9. Taheri S., Abdullah L., Yusop M., Hanafi M., Sahebi M., Azizi P., Shamshiri R. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants // Molecules. 2018. No. 23. Article number 399. DOI:https://doi.org/10.3390/molecules23020399.

10. Spadoni A., Sion S., Gadaleta S., Savoia M., Piarulli L., Fanelli V., Rienzo V., Taranto F., Miazzi M., Montemurro C., Sabetta W. A Simple and Rapid Method for Genomic DNA Extraction and Microsatellite Analysis in Tree Plants // Journal of Agricultural Science and Technology. 2019. No. 21 (5). Pp. 1215-1226.

11. Klyachenko O. L., Prisyazhnyuk L. M. Izuchenie allel'nogo sostoyaniya mikrosatellitnyh lokusov saharnoy svekly (Beta vulgaris L.) [Elektronnyy resurs] // Zhivye i biokosnye sistemy. 2014. № 8 (5). URL: http://www.jbks.ru/archive/issue-8/article-5 (data obrascheniya: 20.02.2022).

12. Holtgräwe D., Rosleff Th., Vieho P., Schneider J., Schulz B., Borchardt D., Kraft Th., Himmelbauer H., Weisshaar B. Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris) // PLOS ONE. 2014. No. 9 (10). Pp. 1-10. DOI:https://doi.org/10.1371/journal.pone.0110113.

13. Dohm J. C, Minoche A. E, Holtgrawe D., Capella-Gutierrez S., Zakrzewski F. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) // Nature. 2014. No. 505. Pp. 546-549. DOI:https://doi.org/10.1038/nature12817.

14. Broccanello Ch., Chiodi C., Funk A., Mitchell McGrath J., Panella L., Stevanato P. Comparison of three PCR-based assays for SNP genotyping in plants // Plant Methods. 2018. No. 14. Article number 28. DOI:https://doi.org/10.1186/s13007-018-0295-6.

15. Abegg F. A. A genetic factor for the annual habit in beets and linkage relationship // Journal of Agricultural Research. 1936. No. 53. Pp. 493-511.

16. Tränkner C., Lemnian I. M., Emrani N., Pfeiffer N., Tiwari S. P., Kopisch-Obuch F. J. A detailed analysis of the BR1 locus suggests a new mechanism for bolting after winter in sugar beet (Beta vulgaris L.) // Frontiers in Plant Science. 2016. No. 7. Article number 1662. DOI:https://doi.org/10.3389/fpls.2016.01662.

17. Höft N., Dally N., Hasler M., Jung Ch. Haplotype Variation of Flowering Time Genes of Sugar Beet and Its Wild Relatives and the Impact on Life Cycle Regimes // Frontiers in Plant Science. 2018. No. 8. Article number 2211. DOI:https://doi.org/10.3389/fpls.2017.02211.

18. Hanson L., Lucchi De Ch., Stevanato P., McGrath M., Panella L., Sella L., Biaggi De M., Concheri G. Root rot symptoms in sugar beet lines caused by Fusarium oxysporum f. sp. Betae // European Journal of Plant Pathology. 2018. No. 150. Pp. 589-593. DOI:https://doi.org/10.1007/s10658-017-1302-x.

19. De Lucchi Ch., Stevanato P., Hanson L., McGrath J., Panella L., De Biaggi M., Broccanello C., Bertaggia M., Sella L., Concheri G. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet // Euphytica. 2017. No. 213 (3). Article number 71. DOI:https://doi.org/10.1007/s10681-017-1859-7.

20. Nagpure A., Choudhary B., Gupta R. Chitinases: in agriculture and human healthcare // Critical Reviews in Biotechnology. 2014. No. 34 (3). Pp. 215-232. DOI:https://doi.org/10.3109/07388551.2013.790874.

21. Yerzhebayeva R., Abekova A., Konysbekov K., Bastaubayeva Sh., Kabdrahkmanova A., Absattrova A., Shavrukov Y. Two sugar beet chitinase genes, BvSP2 and BvSE2, analysed with SNP Amplifluor-like markers, are highly expressed after Fusarium root rot inoculation and field susceptibility trial // PeerJ. 2018. No. 6. Pp. 2-19. DOI:https://doi.org/10.7717/peerj.5127.

22. Nalbandyan A. A., Fedulova T. P., Goleva G. G. PCR-identifikaciya gena ustoychivosti R6m-1 k kornevym nematodam saharnoy svekly // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2018. No. 2 (57). Pp. 43-48.

23. Weiland J., Yu M. A Cleaved Amplified Polimorphic Sequence (CAPS) Marker Associated with Root-Knot Nematode Resistance in Sugar beet // Crop Science. 2003. No. 43. Pp. 1814-1818. DOI:https://doi.org/10.2135/cropsci2003.1814.

24. Bakooie M., Pourjam E., Mahmoudi S., Safaie N., Naderpour M. Development of an SNP Marker for Sugar Beet Resistance/Susceptible Genotyping to Root-Knot Nematode // Journal of Agricultural Science and Technology. 2015. No. 17. Pp. 443-454.

25. Ghaemir R., Pourjam E., Safaie N. Molecular insights into the compatible and incompatible interactions between sugar beet and the beet cyst nematode // BMC Plant Biology. 2020. No. 20. Article number 483. DOI:https://doi.org/10.1186/s12870-020-02706-8.

26. Norouzi P, Stevanato P., Mahmoudi S., Fasahat P., Biancardi E. Molecular Progress in Sugar Beet Breeding for Resistance to Biotic Stresses in Sub-Arid Conditions-Current Status and Perspectives // Journal of Crop Science and Biotechnology. 2017. No. 20 (2). Pp. 99-105. DOI:https://doi.org/10.1007/s12892-016-0090-0.

27. Tamada T., Schmitt C., Saito M., Guilley H., Richards K., Jonard G. High resolution analysis of the read through domain of beet necrotic yellow vein virus read through protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae // Journal of General Virology. 1996. No. 77. Pp. 1359-1367.

28. Tamada T., Uchino Y., Kusume T., Iketani-Saito M., Chiba S., Andika I., Kondo H. Pathogenetic roles of beet necrotic yellow vein virus RNA5 in the exacerbation of symptoms and yield reduction, development of scab-like symptoms, and Rz1-resistance breaking in sugar beet // Plant Pathology. 2021. No. 70. Pp. 219-232. DOI:https://doi.org/10.1111/ppa.13266.

29. Biancardi E., Lewellen R., Biaggi M., Erichsen A., Stevanato P. The origin of rhizomania resistance in sugar beet // Euphytica. 2002. No. 127. Pp. 383-397.

30. Stevanato P., Biaggi M., Broccanello Ch., Biancardi E., Saccomani M. Molecular genotyping of “Rizor” and “Holly” rhizomania resistances in sugar beet // Euphytica. 2015. No. 206. Pp. 427-431. DOI:https://doi.org/10.1007/s10681-015-1503-3.

31. Litwiniec A., Gośka M., Choińska B., Kużdowicz M., Łukanowski A., Skibowska B. Evaluation of rhizomania-resistance segregating sequences and overall genetic diversity pattern among selected accessions of Beta and Patellifolia. Potential implications of breeding for genetic bottlenecks in terms of rhizomania resistance // Euphytica. 2016. No. 207. Pp. 685-706. DOI:https://doi.org/10.1007/s10681-015-1570-5.

32. Amiri R., Mesbah M., Moghaddam M., Bihamta S., Mohammadi A., Norouzi P. A new RAPD marker for beet necrotic yellow vein virus resistance gene in Beta vulgaris // Biologia Plantarum. 2009. No. 53. Pp. 112-119.

33. Feghhi A., Norouzi P., Saidi A., Zamani K., Amiri R. Identification of SCAR and RAPD markers linked to Rz1 gene in Holly sugar beet using BSA and two genetic distance estimation methods [e-resource] // Electronic Journal of Plant Breeding. 2012. No. 3 (1). Pp. 598-605. URL: https://doaj.org/article/205c7ea5994542b287c276aef860c828 (date of reference: 20.02.2022).

34. Litwiniec A., Łukanowski A., Gośka M. RNA silencing mechanisms are responsible for outstanding resistance of some wild beets against rhizomania. A preliminary evidence-based hypothesis // Journal of Animal and Plant Sciences. 2014. No. 21. Pp. 3273-3292.

35. Jin H., Dong D., Yang Q., Zhu D. Salt-responsive transcriptome profiling of suaeda glauca via RNA sequencing // PLOS ONE. 2016. No. 11. Article number 0150504. DOIhttps://doi.org/10.1371/journal.pone.0150504.

36. Ali Sh., Rizwan M., Qayyum M., Sik-Ok Y., Ibrahim M., Riaz M., Arif M., Hafeez F., Al-Wabel M., Shahzad A. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review // Environmental Science and Pollution Research. 2017. No. 24. Pp. 12700-12712. DOI:https://doi.org/10.1007/s11356-017-8904-x.

37. Wedeking R., Mahlein A.-K., Steiner U., Oerke E.-C., Goldbach H. E., Wimmer M. A. Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography // Functional Plant Biology. 2017. No. 44. Pp. 119-133. DOI:https://doi.org/10.1071/FP16112.

38. Geng G., Chunhua L., Stevanato P., Li R., Liu H., Yu L., Wang Y. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet // International Journal of Molecular Sciences. 2019. No. 20 (23). Article number 5910. DOI:https://doi.org/10.3390/ijms20235910.

39. Rodríguez-Rosales M., Gálvez F., Huertas R., Aranda M., Baghour M., Cagnac O., Venema K. Plant NHX cation/proton antiporters // Plant Signaling & Behavior. 2009. No. 4 (4). Pp. 265-276. DOI:https://doi.org/10.4161/psb.4.4.7919.

40. Adler G., Blumwald E., Bar-Zvi D. The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor // Planta. 2010. No. 232. Pp. 187-195. DOI:https://doi.org/10.1007/s00425-010-1160-7.

41. Gui G., Chunhua L., Stevanato P., Li R., Liu H., Yu L., Wang Y. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet // International Journal of Molecular Sciences. 2019. No. 20 (23). Article number 5910. DOI:https://doi.org/10.3390/ijms20235910.

42. Liu L., Wang B., Liu D., Zou Ch., Wu P., Wang Z., Wang Y., Li C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots // BMC Plant Biology. 2020. No. 20. Article number 138. DOI:https://doi.org/10.1186/s12870-020-02349-9.

43. Erbasol I., Ozan Bozdag G., Koc A., Pedas P., Karakaya H. Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast // Biometals Springer. 2013. No. 26. Pp. 795-804. DOI:https://doi.org/10.1007/s10534-013-9658-7.

44. Ricachenevsky F., Menguer P., Sperotto R., Williams L., Fett J. Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies // Frontiers in Plant Science. 2013. No. 4. Article number 144. DOI:https://doi.org/10.3389/fpls.2013.00144.

45. Viehweger K. How plants cope with heavy metals // Botanical Studies. 2014. No. 55. Article number 35. DOI:https://doi.org/10.1186/1999-3110-55-35.

46. Oshevnev V. P., Gribanova N. P., Vasil'chenko E. N., Berdnikov R. V. Stabilizaciya priznaka odnosemyannosti pri sozdanii komponentov gibridov saharnoy svekly // Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk. 2018. № 20 (2). S. 186-191.

47. Hemayati S., Taleghani D., Shahmoradi Sh. Effects of steckling weight and planting density on sugar beet (Beta vulgaris L.) monogerm seed yield and qualitative traits // Pakistan Journal of Biological Sciences. 2008. No. 11 (2). Pp. 226-231. DOI:https://doi.org/10.3923/pjbs.2008.226.231.

48. Amiri R., Sarafraz E., Sadat Noori S., Norouzi P., Seyedmohammadi N. A new molecular marker linked to gene for monogermity in sugar beet (Beta vulgaris L.) // Romanian Agricultural Research. 2011. No. 28. Pp. 95-101.

49. Bragin A. G., Ivanov M. K., Fedoseeva L. A., Dymshic G. M. Analiz geteroplazmaticheskogo sostoyaniya mitohondrial'noy DNK fertil'nyh i muzhskosteril'nyh rasteniy saharnoy svekly (Beta vulgaris) // Vavilovskiy zhurnal genetiki i selekcii. 2011. № 15 (3). S. 585-590.

50. Fedulova T. P., Nalbandyan A. A., Duvanova T. N. Skrining ishodnyh materialov saharnoy svekly na nalichie minisatellitnyh lokusov TRs, svyazannyh s CMS // Sahar. 2022. № 3. S. 38-42. DOI:https://doi.org/10.24412/2413-5518-2022-3-38-41.

51. Nishizawa S., Kubo T., Mikami T. Variable number of tandem repeat loci in the mitochondrial genomes of beets // Current Genetics. 2000. No. 37. Pp. 34-38. DOI:https://doi.org/10.1007/s002940050005.

52. Xia H., Zhao W., Shi Y., Wang X., Wang B. Microhomologies Are Associated with Tandem Duplications and Structural Variation in Plant Mitochondrial Genomes // Genome Biology and Evolution. 2020. No. 12 (11). Pp. 1965-1974. DOI:https://doi.org/10.1093/gbe/evaa/172.

53. Husseyn A. S., Nalbandyan A. A., Fedulova T. P., Cherepuhina I. V., Kryukova T. I., Miheeva N. R., Rudenko T. S.. Novye polimorfizmy v gene BTC1 saharnoy svekly // Biotehnologiya. 2020. № 36 (6). S. 66-71. DOI:https://doi.org/10.21519/0234-2758-2020-36-6-66-71.

54. Husseyn A. S., Miheeva N. R., Nalbandyan A. A., Cherkasova N. N. Skrining rasteniy-regenerantov saharnoy svekly na nalichie gena ustoychivosti k tyazhelym metallam MTP4 // Biotehnologiya. 2021. № 37 (4). S. 14-19. DOI:https://doi.org/10.21519/0234-2758-2021-37-4-14-19.

55. Nalbandyan A. A., Husseyn A. S., Fedulova T. P., Rudenko T. S., Miheeva N. R., Selivanova G. A. Izuchenie gena kisloy hitinazy SE2 v genotipah saharnoy svekly // Agrarnaya nauka. 2021. № 348 (4). S. 88-90. DOI:https://doi.org/10.32634/0869-8155-2021-348-4-88-90.

56. Nalbandyan A. A., Hussein A. S., Fedulova T. P., Cherepukhina I. V., Kryukova T. I., Rudenko T. S., Mikheeva N. R., Moiseenko A. V. Differentiation of Sugar Beet Varieties Using SSR Markers: A Tool to Create Promising Hybrids // Russian Agricultural Sciences. 2020. No. 46 (5). Pp. 442-446. DOI:https://doi.org/10.3103/S1068367420050146.

57. Husseyn A. S., Nalbandyan A. A., Fedulova T. P., Kryukova T. I., Fomina A. S., Moiseenko A. V. Nukleotidnye zameny v gene ustoychivosti k gallovym nematodam saharnoy svekly // Agrarnaya nauka. 2022; № 355 (1). S. 110-113. DOI:https://doi.org/10.32634/0869-8155-2022-355-1-110-113.

Login or Create
* Forgot password?