Saint Petersburg, Russian Federation
Saint Petersburg, Russian Federation
Abstract. The purpose of the article was to assess the change in the level of structural organization of the amino acid profile of root exometabolites of various resistance genotypes of peas under the influence of metal-induced stress. Research method. Plants were grown under sterile controlled conditions (climatic chamber) with the addition of toxic concentrations, cadmium, cobalt, zinc or mercury to the nutrient medium. The objects for the study were the Cd-sensitive genotype of the pea variety SGE, as well as the unique Cd-resistant mutant SGECDt created on its basis. Results. It has been established that all salt solutions of metals have an inhibitory effect on plant growth rates. At the same time, as expected, the addition of cadmium and cobalt to the medium had a greater effect on the decrease in the biomass of the wild line SGE than in the mutant genotype SGECDt. The latter reacted more to the introduction of toxic mercury into the environment. As for zinc, here, the inhibition of the biomass of both organs in the two genotypes was equivalent. The addition of all toxicants to the medium led to an increase in the total yield of all amino acids. In the SGECDt mutant, this manifested itself to a greater extent, which is associated with certain aspects of metal detoxification in this genotype in plant tissues. Cluster analysis made it possible to separate the ratios of the amino acid profile obtained on zinc and mercury in both genotypes into a separate independent group. The results of calculations using a neural network confirmed the resistance of the mutant to Cd and Co ions, and sensitivity to Zn and Hg. The wild line was found to be resistant to the selected concentration of Co. Scientific innovation. The mathematical model, designed on the basis of the collected amino acid exudation data array, makes it possible, on the basis of a matrix of correlation ratios, to predict the yield of absolutely dry plant protein biomass and to primary screening the adaptive lability of various varieties under metal-induced stress.
Pisum sativum, SGECDt, heavy metals, root secretions, amino acids, neural network, fractals, biocomposition indices
1. Daudert D. G. Exploring the Impact of Pretrained Bidirectional Language Models on Protein Secondary Structure Prediction. Michigan: Masters Theses, 2018. 65 p.
2. Rozenberg G. S. Fraktal'nye metody analiza struktury soobschestv // Principy ekologii. 2018. № 4. S. 4-43.; EDN: https://elibrary.ru/ZCUPTF
3. Kawasaki A., Okada S., Zhang C. et al. A sterile hydroponic system for characterising root exudates from specific root types and whole-root systems of large crop plants // Plant Methods. 2018. Vol. 14. Article number 114. DOI:https://doi.org/10.1186/s13007-018-0380-x.; ; EDN: https://elibrary.ru/GOYYOI
4. Dragavcev V. A. Novaya sistema regulyacii u rasteniy i neobhodimost' sozdaniya selekcionnogo fitotrona v RF // Zhurnal tehnicheskoy fiziki. 2018. № 88. S. 1331-1335.; DOI: https://doi.org/10.21883/JTF.2018.09.46416.26-18; EDN: https://elibrary.ru/YWBPRR
5. Zelenkov V. N., Vernik P. A., Bandurin V. V., Latushkin V. V., Novikov V. B., Gavrilov S. V., Korshuk V. A. Ispol'zovanie programmno-apparatnogo cifrovogo kompleksa «Sinergotron» dlya razrabotki innovacionnyh tehnologiy vyraschivaniya rasteniy // Mezhdunarodnyy akademicheskiy vestnik. 2019. № 7 (39). S. 37-40.; EDN: https://elibrary.ru/SGRRNW
6. Latushkin V. V., Zelenkov V. N., Lapin A. A., Vernik P. A., Gavrilov S. V., Novikov V. B. Eksperimental'noe modelirovanie usloviy ontogeneza rasteniy i biotehnologicheskih metodov ih vyraschivaniya v zakrytoy ekosisteme - sinergotrone // Vestnik RAEN. 2021. T. 21. № 1. S. 46-53.; DOI: https://doi.org/10.52531/1682-1696-2021-21-1-46-53; EDN: https://elibrary.ru/UWOIYU
7. Belimov A. A., Malkov N. V., Puhalsky J. V., Tsyganov V. E., Bodyagina K. B., Safronova V. I., Dietz K. J., Tikhonovich I. A. The Crucial Role of Roots in Increased Cd-tolerance and Cd-accumulation in the Pea (Pisum sativum L.) Mutant SGECDt // Plant Biology. 2018. Vol. 62. No. 3. Pp. 543-550.
8. Sharakshane A. An easy estimate of the PFDD for a plant illuminated with white LEDs: 1000 lx = 15 μmol/s/m2 // BioRxiv. 2018. DOI:https://doi.org/10.1101/289280.
9. Gafarov F. M., Galimyanov A. F. Iskusstvennye neyronnye seti i prilozheniya: uchebnoe posobie. Kazan': Izd-vo Kazan. un-ta, 2018. 121 s.
10. Gudfellou Ya., Bendzhio I., Kurvill' A. Glubokoe obuchenie. Moskva: DMK Press, 2018. 652 s.
11. Team Core R. A Language and Environment for Statistical Computing. Vienna: Statistical Computing, 2018. 1731 p.
12. Weinberg S., Harel D., Abramowitz S. Statistics Using R: An Integrative Approach. Cambridge: Cambridge University Press, 2020. 692 p.
13. Ghosh U. K., Islam M. N., Siddiqui M. N., Cao X., Khan M. A. R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms // Plant Biology. 2022. No. 24 (2). Pp. 227-239.
14. Siddique A., Kandpal G., Kumar P. Proline Accumulation and its Defensive Role Under Diverse Stress Condition in Plants: An Overview // Journal of Pure and Applied Microbiology. 2018. Vol. 12 (3). Pp. 1655-1659.
15. Ali S., Abbas Z., Seleiman M. F., Rizwan M., Yava Ş İ., Alhammad B. A., Shami A., Hasanuzzaman M., Kalderis D. Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Tolerance in Plants // Plants. 2020. Vol. 9 (7). Article number 896. DOI:https://doi.org/10.3390/plants9070896.; ; EDN: https://elibrary.ru/KMXNYO
16. Li Y., Fang Z., Zhou X, Gao J., Wang J., Huang L., Chen Y., Sun L., Deng Q., Gooneratne R. Threonine Facilitates Cd Excretion by Increasing the Abundance of Gut Escherichia coli in Cd-Exposed Mice // Molecules. 2023. Vol. 28 (1). Article number 177. DOI:https://doi.org/10.3390/molecules28010177.; ; EDN: https://elibrary.ru/AMVDAA
17. Sadak M. S., Ramadan A. A. E. Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.) // Physiology and Molecular Biology of Plants. 2021. Vol. 27 (3). Pp. 469-481.; DOI: https://doi.org/10.1007/s12298-021-00958-8; EDN: https://elibrary.ru/HNMNHO