Abstract. The use of biofertilizers based on plant growth promoting (PGP) bacteria is a promising direction in agri-biotechnology. The purpose was to evaluate the PGP-attributes of Bacillus sp. and to reveal the morphophysiological features of rapeseed (Brassica napus L.) when inoculated with these rhizobacteria. Methods. The ability of Bacillus sp. strain TO15c isolated from the rhizosphere of Taraxacum officinale on Zack's nitrogen-free medium to produce indol-3-acetic acid (IAA) and phosphates was studied. In pot-scale experiments, the assessment of changes in the morphophysiological characteristics of rapeseed upon inoculation with rhizobacteria both in the absence and in the presence of nitrogen fertilizer was performed. At the end of 100-day vegetation, shoot length, total leaf area, fresh biomass, content of macronutrients and photosynthetic pigments were determined. Results. The ability of TO15c to produce IAA (up to 26 mg/L) and solubilize phosphate (up to 60 mg/L) has been proven. Soil inoculation with rhizobacteria in the presence of ammonium nitrate led to the increase in shoot length by 24 % and total leaf area by 16 %. The aboveground fresh biomass increased by 1.5 times, the underground by 2.5 times, and the content of macronutrients improved. The rise in the photosynthetic pigment content (1.5 times on average) was also noted when inoculated with TO15c. The maximum effect was achieved with the rhizobacteria and nitrogen fertilizer combined application. Scientific novelty. The effectiveness of Bacillus sp. TO15c on rapeseed increased in the presence of nitrogen fertilizer, despite the fact that these PGPR were able to fix atmospheric nitrogen.
Brassica napus, bacterial biofertilizer, plant-microbial interactions, indol-3-acetic acid, phosphate solubilization, macronutrients, photosynthetic pigments
1. Aloo B. N., Tripathi V., Makumba B. A., Mbega E. R. Plant-growth promoting rhizobacterial biofertilizers for crop production: The past, present, and future // Frontiers in Plant Science. 2022. Vol. 13. Article number 1002448. DOI:https://doi.org/10.3389/fpls.2022.1002448.
2. Yadav A. N., Verma P., Singh B., Chauahan V. S., Suman A., Saxena A. K. Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture // Advances in Biotechnology and Microbiology. 2017. Vol. 5 (5). Article number 555671. DOI:https://doi.org/10.19080/AIBM.2017.05.5556671.
3. Dubovickiy A. A., Klimentova E. A. Gotovnost' k biologizacii kak sub'ektivnyy faktor formirovaniya ustoychivyh sistem zemlepol'zovaniya // Agrarnyy vestnik Urala. 2022. № 06 (221). S. 68-77. DOI:https://doi.org/10.32417/1997-4868-2022-221-06-68-77.
4. Soboleva O. M. Rol' rizosfernyh bakteriy v povyshenii ekologizacii agrocenozov // Dostizheniya nauki i tehniki APK. 2018. № 5. S. 19-22. DOI:https://doi.org/10.24411/0235-2451-2018-10504.
5. Chandran H., Meena M., Sharma K. Microbial biodiversity and bioremediation assessment through omics approaches // Frontiers of Environmental Chemistry. 2020. Vol. 1. Article number 570326. DOI:https://doi.org/10.3389/fenvc.2020.570326.
6. Chandran H., Meena M., Swapnil P. Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture // Sustainability. 2021. Vol. 13 (19). Article number 10986. DOI:https://doi.org/10.3390/su131910986.
7. Aggani S. L. Development of bio-fertilizers and its future perspective // Scholars Academic Journal of Pharmacy. 2013. Vol. 2 (4). Pp. 327-332.
8. Gupta G., Parihar S. S., Ahirwar N. K., Snehi S. K., Singh V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology. 2015. Vol. 7. Pp. 96-102. DOI:https://doi.org/10.4172/1948-5948.1000188.
9. Wagi S., Ahmed A. Bacillus spp.: potent microfactories of bacterial IAA // Peer Journal. 2019. Vol. 7. Article number e7258. DOI:https://doi.org/10.7717/peerj.7258.
10. Kiruthika S., Arunkumar M. A Comprehensive study on IAA production by Bradyrhizobium japonicum and Bacillus subtilis and its effect on Vigna radiata plant growth // Indian Journal of Agricultural Research. 2021. Vol. 55 (5). Pp. 570-576. DOI:https://doi.org/10.18805/IJARe.A-5521.
11. Khan M. S., Gao J., Chen X., Zhang M., Yang F., Du Y., Moe T. S., Munir I., Xue J., Zhang X. The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects // Journal of Microbiology and Biotechnology. 2020. Vol. 30 (5). Pp. 668-680. DOI:https://doi.org/10.4014/jmb.1910.10021.
12. Voropaeva O. V., Maleva M. G., Borisova G. G. Estimation of plant growth promoting activity of silicate solubilizing rhizobacteria for use in agricultural biotechnology // AIP Conference Proceedings. 2022. Vol. 2390. Article number 030097. DOI:https://doi.org/10.1063/5.0069228.
13. Kumar A., Borisova G., Maleva M., Tripti, Shiryaev G., Tugbaeva A., Sobenin A., Kiseleva I. Biofertilizer based on biochar and metal-tolerant plant growth promoting rhizobacteria alleviates copper impact on morphophysiological traits in Brassica napus L. // Microorganisms. 2022. Vol. 10. Article number 2164. DOI:https://doi.org/10.3390/microorganisms10112164.
14. Kumar A., Tripti, Voropaeva O., Maleva M., Panikovskaya K., Borisova G., Rajkumar M., Bruno L.B. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus // Chemosphere. 2021. Vol. 266. Article number 128983. DOI:https://doi.org/10.1016/j.chemosphere.2020.128983.
15. Prakash J., Arora N. K. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. // 3 Biotech. 2019. Vol. 9. Article number 126. DOI:https://doi.org/10.1007/s13205-019-1660-5.
16. Opredelitel' bakteriy Berdzhi: V 2 t. / Per. s angl. ; Pod red. Dzh. Houlta [i dr.]. Moskva: Mir, 1997. T. 2. 368 s.
17. Seliber G. L. Bol'shoy praktikum po mikrobiologii. Moskva: Vysshaya shkola, 1962. 492 s.
18. Voropaeva O. V., Borisova G. G., Maleva M. G., Podstavkina A. V., Ermoshin A. A., Tugbaeva A. S., Filimonova E. I. Roststimuliruyuschaya aktivnost' i metalloustoychivost' izolyatov bakteriy iz rizosfery orhidei Epipactis atrorubens, proizrastayuschey na serpentinitovyh cubstratah Srednego Urala // Zhurnal Sibirskogo federal'nogo un-ta. Biologiya. 2022. T. 15 (3). S. 297-313. DOI:https://doi.org/10.17516/1997-1389-0389.
19. Kul'neva N. G., Goykalova O. Yu., Shmatova A. I. Issledovanie bakteriostaticheskih svoystv hlorsoderzhaschego preparata dlya sveklosaharnogo proizvodstva // Vestnik VGUIT. 2014. № 4. S. 187-190.
20. Dem'yanova E. I. Botanicheskoe resursovedenie: ucheb. posobie po speckursu. Perm': Perm. gos. un-t, 2007. 172 s.
21. Biohimiya: praktikum: uchebno-metodicheskoe posobie / Sost. G. G. Borisova, N. V. Chukina, I. S. Kiseleva, M. G. Maleva. Ekaterinburg: Izd-vo Ural'skogo un-ta, 2017. 116 s.
22. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic membranes // Methods in Enzymology. 1987. Vol. 148. Pp. 350-382. DOI:https://doi.org/10.1016/0076-6879(87)48036-1.
23. Lichtenthaler H., Babani F. Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b) (x+c) in C4 plants as compared to C3 plants // Photosynthetica. 2021. Vol. 60. Pp. 1-7. DOI:https://doi.org/10.32615/ps.2021.041.
24. Minakshi, Sharma S., Sood G., Chauhan A. Optimization of IAA production and P-solubilization potential in Bacillus subtilis KA(1)5r isolated from the medicinal herb Aconitum heterophyllum-growing in western Himalaya, India // Journal of Pharmacognosy and Phytochemistry. 2020. Vol. 9 (1). Pp. 2008-2015.
25. Kovalevskaya N. P., Sharavin D. Yu. Bioregulyatornaya aktivnost' associativnyh azotfiksiruyuschih bakteriy, vydelennyh iz tehnogenno-zasolennyh pochv // Sovremennye problemy nauki i obrazovaniya. 2015. № 3. URL: https://science-education.ru/ru/article/view?id=17441 (data obrascheniya: 03.03.2023).
26. Cabello A. J. C., Olivas F. A., Portugal O. V., Valdés A. R., Alcalá L. E. I. Evaluation of Bacillus subtilis as promoters of plant growth // Revista Bio Ciencias. 2019. Vol. 6. Article number e418. DOI:https://doi.org/10.15741/revbio.06.e418.
27. Widowati T., Nuriyanah, Nurjanah L., Lekatompessy S. J. R., Simarmata R. Bioproduction of indole acetic acid by endophytic bacteria of Bacillus strains isolated from chili (Capsicum annuum L.) and its potential for supporting the chili seedlings // AIP Conference Proceedings. 2023. Vol. 2606. Article number 020018. DOI:https://doi.org/10.1063/5.0118396.
28. Ovsyannikov Yu. A. O edinstve processov fotosinteza, azotfiksacii i pochvoobrazovaniya // Agrarnyy vestnik Urala. 2022. № 01 (216). S. 39-46. DOI:https://doi.org/10.32417/1997-4868-2022-216-01-39-46.
29. Borisova G. G., Voropaeva O. V., Maleva M. G., Lykova O. V. Bioudobreniya na osnove silikatnyh bakteriy povyshaet produktivnost' pochv i kul'turnyh rasteniy (na primere Brassica juncea (L.) Czern.) // Subtropicheskoe i dekorativnoe sadovodstvo. 2022. № 80. S. 140-151. DOI:https://doi.org/10.31360/2225-3068-2022-80-140-151.