MODELING A MONITORING SYSTEM FOR AGRICULTURAL ECOLOGICAL SYSTEMS BASED ON BIG DATA
Abstract and keywords
Abstract (English):
Abstract. Due to population growth and food demand, the monitoring of agrarian ecological systems is becoming increasingly important. This is due to the expected use of resources, increased yields and the impacts of agricultural systems in the face of climate change and increasing anthropogenic pressure. The use of such technologies makes it possible to obtain more accurate and objective data on the state of agricultural ecosystems, which, in turn, is based on decisions made aimed at improving the management of agricultural ecosystems and optimizing agricultural practices. Purpose. In this scientific paper, the purpose is to present the results of the assessment of agricultural ecological systems, developed on the basis of the use of Big Data. Methods. The authors of the article analyze the methods of monitoring agroecosystems and justify a new observation that will improve the quality and control of monitoring results. The main emphasis is placed on the use of big data analysis and machine learning methods to obtain more accurate and objective information about the state of agricultural ecosystems. Scientific novelty. The authors have carried out modeling of monitoring systems for agrarian ecological systems based on big data methodology. This represents a transition from classical approaches to more efficient and accurate ones, which is a significant step forward in this field of research. Results. The new model for monitoring agrarian ecological systems provides opportunities for a more accurate and objective study and assessment of the state of agroecosystems. It also allows you to make informed decisions based on the information received, which is an important guarantee for the sustainable development of the agricultural sector. In conclusion, the authors consider the possibilities for improving efficiency and its application models in various areas of agricultural activity.

Keywords:
Big Data, agro-industrial complex, agrarian ecological systems
Text
Text (PDF): Read Download
References

1. Alves M. A. B., de Souza A. P., de Almeida F. T., Hoshide A. K., Araújo H. B., da Silva A. F., de Carvalho D. F. Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment // Sustainability. 2023. Vol. 15. Article number 4954. DOI:https://doi.org/10.3390/su15064954.; ; EDN: https://elibrary.ru/DTFQPV

2. Antora S. S., Chang Y. K., Nguyen-Quang T., Heung B. Development and Assessment of a Field-Programmable Gate Array (FPGA)-Based Image Processing (FIP) System for Agricultural Field Monitoring Applications // AgriEngineering. 2023. Vol. 5. Pp. 886-905.; DOI: https://doi.org/10.3390/agriengineering5020055; EDN: https://elibrary.ru/ZMAGNL

3. Chen L., He Z., Gu X., Xu M., Pan S., Tan H., Yang S. Construction of an Agricultural Drought Monitoring Model for Karst with Coupled Climate and Substratum Factors - A Case Study of Guizhou Province, China // Water. 2023. Vol. 15. Article number 1795. DOI:https://doi.org/10.3390/w15091795.; ; EDN: https://elibrary.ru/SRJNIM

4. Hu L., Zhang C., Zhang M., Shi Y., Lu J., Fang Z. Enhancing FAIR Data Services in Agricultural Disaster: A Review // Remote Sens. 2023. Vol. 15. Article number 2024. DOI:https://doi.org/10.3390/rs15082024.; ; EDN: https://elibrary.ru/AGIGMD

5. Abbasov I. B., Deshmuh R. R. Raspoznavanie izobrazheniy sel'skohozyaystvennyh kul'tur, rasteniy i lesnyh massivov // Izvestiya YuFU. Tehnicheskie nauki. 2020. № 3 (213). S. 202-212. DOI:https://doi.org/10.18522/2311-3103-2020-3-202-212.; ; EDN: https://elibrary.ru/GLVQUZ

6. Budzko V. I., Medennikov V. I. Sistemnyy analiz obrazovatel'nyh cifrovyh ekosistem v APK // Sistemy vysokoy dostupnosti. 2023. T. 19. № 1. S. 46-58. DOI:https://doi.org/10.18127/j20729472-202301-04.; ; EDN: https://elibrary.ru/KEXDUB

7. Germanova S. E., Dremova T. V., Sambros P. A. Upravlenie i ocenka riskov zagryazneniya pochvy nefteproduktami v APK // Mezhdunarodnyy sel'skohozyaystvennyy zhurnal. 2020. № 1. S. 59-61. DOI:https://doi.org/10.24411/2587-6740-2020-11013.; ; EDN: https://elibrary.ru/AHWPWV

8. Dichenskiy A. V., Gric N.V., Udotov A.Yu. Aspekty primeneniya robotizirovannoy tehniki v agrarnom proizvodstve - sovremennoe sostoyanie i perspektivy // Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2020. № 50. S. 15-19.; EDN: https://elibrary.ru/ZREZBT

9. Ivanovskaya V. V., Golubeva E. I., Trufanov A. V. Primenenie GIS-tehnologiy dlya optimizacii sel'skohozyaystvennogo prirodopol'zovaniya // Problemy regional'noy ekologii. 2020. № 5. S. 36-41. DOI:https://doi.org/10.24412/1728-323X-2020-5-36-41.; ; EDN: https://elibrary.ru/CZNNSK

10. Kosenchuk O. V. Tipologiya agrarnyh territoriy po ocenke mnogofunkcional'nosti sel'skogo hozyaystva // Regional'nye problemy preobrazovaniya ekonomiki. 2019. № 11 (109). S. 57-66. DOI:https://doi.org/10.26726/1812-7096-2019-11-57-66.; ; EDN: https://elibrary.ru/ETHSQJ

11. Kuznecov V. K. Sanzharova N. I., Panov A. V., Isamov N. N. Radiacionno-ekologicheskiy monitoring agroekosistem v zone vozdeystviya AES: metodologiya i rezul'taty issledovaniy // Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2019. T. 64. № 4. S. 25-31. DOI:https://doi.org/10.12737/article_5d1102809c5ac3.32613968.; ; EDN: https://elibrary.ru/PHKIHU

12. Lobachevskiy Ya. P., Dorohov A. S. Cifrovye tehnologii i robotizirovannye tehnicheskie sredstva dlya sel'skogo hozyaystva // Sel'skohozyaystvennye mashiny i tehnologii. 2021. T. 15. № 4. S. 6-10. DOI:https://doi.org/10.22314/2073-7599-2021-15-4-6-10.; ; EDN: https://elibrary.ru/YFRZDV

13. Mabiala Zh., Gnizdylo V. S. Ekologo-ekonomicheskie problemy territorial'noy politiki razvitiya Respubliki Krym // CITISE. 2020. № 3 (25). S. 38-52. DOI:https://doi.org/10.15350/2409-7616.2020.3.04.; ; EDN: https://elibrary.ru/UZJSVU

14. Matveeva N. I., Zvolinskiy V. P. Predprinimatel'skiy potencial kak ekonomicheskaya kategoriya // Teoreticheskie i prikladnye problemy agropromyshlennogo kompleksa. 2020. T. 44. № 2. S. 49-55. DOI:https://doi.org/10.32935/2221-7312-2020-44-2-49-55.; ; EDN: https://elibrary.ru/IBCSDL

15. Nazarov D. M., Kondratenko I. S., Sulimin V. V., Shvedov V. V. Cifrovizaciya sel'skogo hozyaystva na primere Rumynii // Mezhdunarodnyy sel'skohozyaystvennyy zhurnal. 2022. № 6 (390). S. 622-624. DOI:https://doi.org/10.55186/25876740_2022_65_6_622.; ; EDN: https://elibrary.ru/KEQEIC

16. Holodov O. A. Kompleksnyy monitoring ispol'zovaniya zemel' sel'skohozyaystvennogo naznacheniya v sovremennyy period // Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika. 2019. T. 21. № 3. S. 107-119. DOI:https://doi.org/10.15688/ek.jvolsu.2019.3.10.; ; EDN: https://elibrary.ru/LPSQNJ

17. Cvetcyh A. V., Shevcova N. V. Ustoychivoe razvitie sel'skih territoriy: sbalansirovannaya sistema pokazateley // Azimut nauchnyh issledovaniy: ekonomika i upravlenie. 2020. T. 9. № 2 (31). S. 366-370. DOI:https://doi.org/10.26140/anie-2020-0902-0088.; ; EDN: https://elibrary.ru/QWXRYB

Login or Create
* Forgot password?