Russian Federation
Abstract. Vitrification of female gametes is the most important tool for solving the strategic tasks of cellular reproductive technologies in animal husbandry, veterinary medicine and biomedicine: replication of elite individuals (cloning, transgenesis), biodiversity conservation, organ xenotransplantation. The aim of this study was to evaluate the parameters of nuclear cytoplasmic maturation (chromatin status and mitochondrial activity) and developmental competence of donor porcine oocytes subjected to intra- (IOV) or extra-ovarian (EOV) vitrification and cultured in various maturation systems. Methods. Donor pig oocytes (6–8 months old) were vitrified extra- or intraovarially using cryoprotective agents (DMSO, ethylene glycol, trehalose, sucrose). The composition of cryoprotective agents was supplemented with 0.001 % highly dispersed silica nanoparticles (HDSns). Oocytes were thawed in trehalose solutions in TS-199 with 10 % of fetal bovine serum (FBS). Oocytes were cultured for 44 hours in media supplemented with granulosa cells (106 cells per ml of medium) and/or 0.001% of HDSns at 38.5 °C, in an atmosphere of 5 % CO2. Fertilization in vitro was carried out in accordance with the recommendations presented by us earlier [17. p. 17]. The functional activity of mitochondria and the status of chromatin in oocytes were assessed by double staining using MitoTracker Orange CMTMRos and Hoechst 33258 dyes. Results. The level of matured oocytes was 61 % at EOV and 29 % at IOV, and the level of cleavage embryos in EOV was in 11 % (31 % vs. 20 %, P < 0.05) higher than at IOV when HDSns with granulosa cells were added in culture media. The maximum indicators of the functional activity of mitochondria among devitrified oocytes were in the group of EOV oocytes have cultured in media supplemented with HDSns and granulosa cells (152 ± 14.9 μA). Scientific novelty. The protocols for intra- and extra-ovarian vitrification of porcine oocytes have been modernized. Addition to cryoprotective agents and culture media of HDSns and co-culture of devitrified oocytes with granulosa cells significantly increased the fertility rates of devitrified gametes.
oocyte, embryo, meiosis, mitochondria, intra- and extra-ovarian vitrification, pig
1. Shinkareckaya G. G. Genofond zhivotnyh: problema issledovaniya i sohraneniya // Obrazovanie i pravo. 2020. № 2. S. 128-137.
2. Romar R., Canovas S., Matas C., Gadea J., Coy P. Pig in vitro fertilization: where are we and where do we go? // Theriogenology. 2019. No. 137. Pp. 113-121.
3. Chen P. R., Uh K., Redel B. K., Reese E. D., Prather R. S., Lee K. Production of Pigs From Porcine Embryos Generated in vitro // Frontiers in Animal Science. 2022. Vol. 3. Article number 826324. DOI:https://doi.org/10.3389/fanim.2022.826324.
4. Son W. Y., Henderson S., Cohen Y., Dahan M., Buckett W. Immature oocyte for fertility preservation // Frontiers in Endocrinology (Lausanne). 2019. No. 10. Article number 464. DOI:https://doi.org/10.3389/fendo.2019.00464.
5. Tharasanit T., Thuwanut P. Oocyte cryopreservation in domestic animals and humans: principles, techniques and updatedoutcomes // Animals. 2021. Vol. 11. Pp. 2949. DOI:https://doi.org/10.3390/ani11102949.
6. Fowler K. E., Mandawala A. A., Griffin D. K., Walling G. E., Harvey S. C. The production of pig preimplantation embryos in vitro: current progress and future prospects // Reproductive Biology. 2018. Vol. 18 (3). Pp. 203-211.
7. Appeltant R., Somfai T., Kikuchi K. Faster, cheaper, defined and efficient vitrification for immature porcine oocytes through modification of exposure time, macromolecule source and temperature // Cryobiology. 2018. Vol. 85. Pp. 87-94.
8. Somfai T., Haraguchi S., Dang-Nguyen T. Q., Kaneko H., Kikuchi K. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage // PLoS ONE. 2023. Vol. 18 (3). Article number e0282959. DOI:https://doi.org/10.1371/journal.pone.0282959
9. Casillas F. The Porcine Experimental Model for Oocyte Cryopreservation by Vitrification // AJBSR. 2020. Vol. 9 (2). Pp. 165-169.
10. López A., Betancourt M., Ducolomb Y., Rodríguez J. J., Casas E., Bonilla E., Bahena I., Retana-Márquez S., Juárez-Rojas L., Casillas F. DNA damage in cumulus cells generated after the vitrification of in vitro matured porcine oocytes and its impact on fertilization and embryo development // Porcine Health Management. 2021. Vol. 7 (1). DOI:https://doi.org/10.21203/rs.3.rs-441164/v1.
11. Savchenko D. S. Izuchenie antioksidantnyh svoystv nanokompozita vysokodispersnogo kremnezema s nanochasticami serebra // Medicina i obrazovanie v Sibiri. 2013. № 6. S. 23-30.
12. Remião M. H., Segatto N. V., Pohlmann A., Guterres S. S., Seixas F. K., Collares T. The potential of nanotechnology in medically assisted reproduction // Frontiers in Pharmacology. 2018. Vol. 8. DOI:https://doi.org/10.3389/fphar.2017.00994.
13. Kuzmina T. I., Chistyakova I. V., Tatarskaya D. N. The influence of highly dispersed silica nanoparticles on the functional activity of mitochondria and chromatin state in native and devitrified Bos Taurus oocytes // Agricultural Biology. 2020. Vol. 55 (4). Pp. 784-793.
14. Casillas F., Ducolomb Y., López A., Betancourt M. Effect of porcine immature oocyte vitrification on oocyte-cumulus cell gap junctional intercellular communication // Porcine Health Management. 2020. Vol. 6 (1). DOI:https://doi.org/10.1186/s40813-020-00175-x.
15. Kuzmina T. I., Chistyakova I. V., Prituzhalova A. O., Tatarskaya D. N. The role of highly dispersed silica nanoparticles in the realization of the effects of granulosa on the maturation and fertilization competence of Sus scrofa domesticus oocytes // Vavilov Journal of Genetics and Breeding. 2022. Vol. 26 (3). Pp. 234-239.
16. Zyuzyun A. B., Scherbak O. V., Osipchuk O. S., Kovtun S. І., Dzіcyuk V. V. Zastosuvannya nanomaterіalu v embrіogenetichnіy sistemі in vitro otrimannya embrіonіv sviney // Faktori eksperimental'noї evolyucії organіzmіv. 2015. T. 17. S. 164-168.
17. Kuz'mina T. I., Al'm H., Torner H. Metody polucheniya embrionov sviney in vitro: metodicheskie rekomendacii. Sankt-Peterburg, Pushkin: Vserossiyskiy nauchno-issledovatel'skiy institut genetiki i razvedeniya sel'skohozyaystvennyh zhivotnyh Rossel'hozakademii, 2008. 38 c.
18. Roy P. K., Qamar A. Y., Fang X., Kim G., Bang S., Zoysa M., Shin S. T., Cho J. Chitosan nanoparticles enhance developmental competence of in vitro-matured porcine oocytes // Reproduction in Domestic Animals. 2020. Vol. 56 (2). Pp. 342-350.
19. Al-Zubaidi U., Liu J., Cinar O., Robker R. L., Adhikari D., Carroll J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation // Molecular Human Reproduction. 2019. Vol. 25 (11). Pp. 695-705.