CHANGES IN SOIL PROPERTIES AND MORPHOMETRIC PARAMETERS OF WHEAT WHEN APPLYING BIOCHAR: VEGETATION EXPERIMENT
Abstract and keywords
Abstract (English):
Abstract. The purpose of this work is to evaluate the effect of biochar on the physico-chemical properties of the soil and morphometric and some chemical characteristics of durum wheat (Triticum durum L.) and indirectly assess the availability of macronutrients in the soil-biochar system based on the state of plants. Methods. Biochar was obtained from birch sawdust at a temperature of 500 °C and was applied in the amount of 2 % of the weight of air-dry soil. Results. As a result of the vegetation experiment, it was revealed that the application of biochar led to changes in the properties of heavy-loamy agro-soddy-podzolic soil – a significant increase in the pH values of the water extract and the total nitrogen content, but at the same time – to a significant decrease in the content of total organic carbon content. Despite the improvement of some soil characteristics, the application of biochar did not affect the height of plants, leaf weight, root weight, nitrogen and phosphorus content in leaves and yield, and also negatively affected the total weight of plants and the weight of grains, which decreased by 15 % and 18 %, respectively, compared to control. The application of biochar had an impact on the structure of the wheat root system – its branching increased, while the diameter of the absorbing roots significantly decreased. The experiment also showed an increase in mycorrhization of roots due to the functional structures of the fungus – arbuscules and vesicles. The scientific novelty lies that the application of biochar from birch sawdust, despite the improvement of some physico-chemical characteristics of the soil, negatively affects the growth of wheat. The reaction of the aboveground parts of plants and the root system indirectly indicates a decrease in the availability of nutrients in the soil-biochar system. The results obtained in the work can be used to develop technologies for the use of biochar meliorants in various soils.

Keywords:
biochar, agro-soddy-podzolic soil, soil physico-chemical characteristics, Triticum durum, nitrogen and phosphorus in plants, root system, absorbing roots, arbuscular mycorrhiza
Text
Text (PDF): Read Download
References

1. Kudeyarov V. N. Vliyanie udobreniy i sistemy zemledeliya na sekvestraciyu ugleroda v pochvah // Agrohimiya. 2022. № 12. S. 79–96. DOI:https://doi.org/10.31857/S0002188122120092.

2. Cornelissen G., Jubaedah, Nurida N. L., Hale S. E., Martinsen V., Silvani L., Mulder J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol // Science of the Total Environment. 2018. Vol. 634. Pp. 561–568. DOI:https://doi.org/10.1016/j.scitotenv.2018.03.380.

3. Murtaza G., Ahmed Z., Usman M., Tariq W., Ullah Z., Shareef M., Iqbal H., Waqas M., Tariq A., Wu Y., Zhang Z., Ditta A. Biochar induced modifications in soil properties and its impacts on crop growth and production // Journal of Plant Nutrition. 2021. Vol. 44. Iss. 11. Pp. 1677–1691. DOI:https://doi.org/10.1080/01904167.2021.1871746.

4. Meschewski E., Holm N., Sharma B. K., Spokas K., Minalt N., Kelly J. J. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth // Chemosphere. 2019. Vol. 228. Pp. 565–576. DOI:https://doi.org/10.1016/j.chemosphere.2019.04.031.

5. Purakayastha T. J., Kumari S., Pathak H. Characterisation, stability, and microbial effects of four biochars produced from crop residues // Geoderma. 2015. Vol. 239–240. Pp. 293–303. DOI:https://doi.org/10.1016/j.geoderma.2014.11.009.

6. Mukherjee A., Zimmerman A. R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures // Geoderma. 2013. Vol. 193. Pp. 122–130. DOI:https://doi.org/10.1016/j.geoderma.2012.10.002.

7. Zhang Q., Song Y., Wu Z., Yan X., Gunina A., Kuzyakov Y., Xiong Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation // Journal of Clean Production. 2020. Vol. 242. DOI:https://doi.org/10.1016/j.jclepro.2019.118435.

8. Craine J. M., Froehle J., Tilman D. G., Wedin D. A., Chapin I. F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients // Oikos. 2003. Vol. 93. Iss. 2. Pp. 274–285. DOI:https://doi.org/10.1034/j.1600-0706.2001.930210.x.

9. Zhu J., Lynch J. P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings // Functional Plant Biology. 2004. Vol. 31 (10). Pp. 949–958. DOI:https://doi.org/10.1071/FP04046.

10. Bayuelo-Jiménez J. S., Gallardo-Valdéz M., Pérez-Decelis V. A., Magdaleno-Armas L., Ochoa I., Lynch J. P. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability // Field Crops Research. 2011. Vol. 121 (3). Pp. 350–362. DOI:https://doi.org/10.1016/j.fcr.2011.01.001.

11. Arinushkina E. V. Rukovodstvo po himicheskomu analizu pochv. Moskva: izd-vo MGU, 1970. 488 s.

12. Vorob'eva L. A. Teoriya i praktika himicheskogo analiza pochv. Moskva: GEOS, 2006. 400 s.

13. Pregitzer K. S., DeForest J. L., Burton A. J., Allen M. F., Ruess R. W., Hendrick R. L. Fine root architecture of nine north American trees // Ecological Monographs. 2002. Vol. 72. Iss. 2. Pp. 293–309. DOI:https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2.

14. Selivanov I. A. Mikosimbiotrofizm kak forma konsortivnyh svyazey v rastitel'nom pokrove Sovetskogo Soyuza. Moskva: Nauka, 1981. 232 s.

15. Al-Wabel M. I., Hussain Q., Usman A. R. A., Ahmad M., Abduljabbar A., Sallam A. S., Ok Y. S. Impact of biochar properties on soil conditions and agricultural sustainability: a review // Land Degradation & Development. 2018. Vol. 29. Iss. 7. Pp. 2124–2161. DOI:https://doi.org/10.1002/ldr.2829.

16. Ponomarev K. O., Pervushina A. N., Korotaeva K. S., Yurtaev A. A., Petuhov A. S., Tabakaev R. B., Shanenkov I. I. Vliyanie biouglya na razvitie yarovoy pshenicy (Triticum aestivum L.) i kislotnost' dernovo-podzolistoy pochvy v Zapadnoy Sibiri // Byulleten' Pochvennogo instituta imeni V.V. Dokuchaeva. 2022. Vyp. 113. S. 110–137. DOI:https://doi.org/10.19047/0136-1694-2022-113-110-137.

17. Tesfaye F., Liu X., Zheng J., Cheng K., Bian R., Zhang X., Li L., Drosos M., Joseph S., Pan G. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments // Environmental Science and Pollution Research. 2021. Vol. 28. No. 26. Pp. 34108–34120. DOI:https://doi.org/10.1007/s11356-021-14119-7.

18. Curaqueo G., Roldán A., Mutis A., Panichini M., Martín A. P.-S., Meier S., Mella R. Effects of biochar amendment on wheat production, mycorrhizal status, soil microbial community, and properties of an Andisol in Southern Chile // Field Crops Research. 2021. Vol 273 (1). Article number 108306. DOI:https://doi.org/10.1016/j.fcr.2021.108306.

19. Gorovtsov A. V., Minkina T. M., Mandzhieva S. S., Perelomov L. V., Soja G., Zamulina I. V., Rajput V. D., Sushkova S. N., Mohan D., Yao J. The mechanisms of biochar interactions with microorganisms in soil // Environmental Geochemistry and Health. 2020. Vol. 42 (8). Pp. 2495–2518. DOI:https://doi.org/10.1007/s10653-019-00412-5.

20. Ahmad Z., Mosa A., Zhan L., Gao B. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review // Chemosphere. 2021. Vol. 278. Article number 130378. DOI:https://doi.org/10.1016/j.chemosphere.2021.130378.

21. Yin S., Suo F., Kong Q., You X., Zhang X., Yuan Y., Yu X., Cheng Y., Sun R., Zheng H., Zhang C., Li, Y. Biochar enhanced growth and biological nitrogen fixation of wild soybean (Glycine max subsp. Soja Siebold & Zucc.) in a Coastal Soil of China // Agriculture. 2021. Vol. 11 (12). Article number 1246. DOI:https://doi.org/10.3390/agriculture11121246.

22. El-Naggar A., El-Naggar A. H., Shaheen S. M., Sarkar B., Chang S. X., Tsang D. C. W., Rinklebe J., Ok Y. S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review // Journal of Environmental Management. 2019. Vol. 241. Pp. 458–467. DOI:https://doi.org/10.1016/j.jenvman.2019.02.044.

23. Alburquerque J. A., Salazar P., Barrón V., Torrent J., Campillo M. C., Gallardo A., Villar R. Enhanced wheat yield by biochar addition under different mineral fertilization levels // Agronomy for Sustainable Development. 2013. Vol. 33. Pp. 475–484. DOI:https://doi.org/10.1007/s13593-012-0128-3.

24. Godlewska P., Ok Y. S., Oleszczuk P. The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils // Journal of Hazardous Materials. 2021. Vol. 403. Article number 123833. DOI:https://doi.org/10.1016/j.jhazmat.2020.123833.

25. Ling L., Luo Y., Jiang B., Lv J., Meng C., Liao Y., Reid B., Ding F., Lu Z., Kuzyakov Y., Xu J. Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups // Soil Biology and Biochemistry. 2022. Vol. 172. Article number 108778. DOI:https://doi.org/10.1016/j.soilbio.2022.108778.

26. Olmo M., Villar R., Salazar P., Alburquerque J. A. Changes in soil nutrient availability explain biochar’s impact on wheat root development // Plant and Soil. 2016. Vol. 399. Pp. 333–343. DOI:https://doi.org/10.1007/s11104-015-2700-5.

27. Shen Q., Hedley M., Arbestain M. C., Kirschbaum M. U. F. Can biochar increase the bioavailability of phosphorus? // Journal of Soil Science and Plant Nutrition. 2016. Vol. 16. No 2. Pp. 268–286. DOI:https://doi.org/10.4067/S0718-95162016005000022.

28. Solaiman Z. M., Abbott L. K., Murphy D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling // Scientific Reports. 2019. Vol. 9 (1). Article number 5062. DOI:https://doi.org/10.1038/s41598-019-41671-7.

29. Hammer E. C., Balogh-Brunstad Z., Jakobsen I., Olsson P. A., Stipp S. L. S., Rillig M. C. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces // Soil Biology and Biochemistry. 2014. Vol. 77. Pp. 252–260. DOI:https://doi.org/10.1016/j.soilbio.2014.06.012.

30. Yang X., Ran Z., Li R., Fang L., Zhou J., Guo L. Effects of biochar on the growth, ginsenoside content, and soil microbial community composition of Panax quinquefolium L. // Journal of Soil Science and Plant Nutrition. 2022. Vol. 22 (2). Pp. 2670–2686. DOI:https://doi.org/10.1007/s42729-022-00835-7.

31. Smit S. E., Rid D. Dzh. Mikoriznyy simbioz / Per. s angl. 3-e izdanie. Moskva: Tovarischestvo nauchnyh izdaniy KMK, 2012. 776 s.

Login or Create
* Forgot password?