CHEMILUMINESCENT CHARACTERISTICS OF PERIPHERAL BLOOD UNDER IN VITRO IRRADIATION IN THE DOSE RANGE OF 100–500 MGY
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. Nowadays a lot of examinations are dedicated to determination of radiobiological effects under low doses of ionising radiation. It is known that ionising radiation in the cells of an organism increases generation of reactive oxygen species (ROS). The purpose of the work is to determine basic parameters of chemiluminescent kinetics of ROS in peripheral blood under in vitro radiation in the range of 100–500 mGy doses. The research will extend the knowledge of the impact degree of ionising radiation in low doses on organism tissue of farm animals. Scientific novelty is that the results of the research will allow to predict radiobiological effects of low doses in a multicellular organism. The research is included in practical and fundamental directions of radiobiology. Research methods. In vitro radiation of blood samples in the range of 100–500 mGy doses. The kinetics of generation of ROS is registered on 36-channel chemiluminometer 3604-PC. Results. The doses in the range of 100–300 mGy accelerated the time of the first peak of spontaneous and activated generation of radicals, under 500 mGy dose the formation of the first peak of spontaneous and activated generation of primary ROS decelerated. Under the impact of low absorbed doses maximum intensity of primary and secondary radicals generation decreased. The inhibition of primary radicals spontaneous production occurred under 100–300 mGy doses, the inhibition of antigen activated generation of primary ROS was under 400 mGy. The reduction of the amount of spontaneous secondary ROS was registered under 100 mGy dose. The decrease of antigen activated secondary radicals production occurred under 100–300 mGy doses. 500 mGy dose inhibited a reaction ability of blood cells to generate primary radicals. The external in vitro gamma radiation in the range of 100–500 mGy had a negative impact on peripheral blood cells showing an acceleration of chemiluminescent reaction as well as decrease of maximum intensity of the first peak of spontaneous and antigen activated primary and secondary radicals production. As a consequence, a decrease of the amount of primary and secondary radicals production was revealed.

Keywords:
absorbed dose, ionising radiation, in vitro, reactive oxygen species (ROS), lucigenin, luminol, chemiluminescence
Text
Publication text (PDF): Read Download
References

1. Vaiserman A., Cuttler J. M., Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders // Biogerontology. 2021. Vol. 22, No. 2. Pp. 145–164. DOI:https://doi.org/10.1007/s10522-020-09908-5.

2. Lan M. I., Inin V. D., Ostapchuk A. V. Ispol'zovanie radiacionnoy stimulyacii v povyshenii produktivnosti sel'skohozyaystvennyh zhivotnyh // Vklad molodyh uchenyh v innovacionnoe razvitie APK Rossii: sbornik statey Vserossiyskoy nauchno-prakticheskoy konferencii molodyh uchenyh. Tom II. Penza, 2020. S. 107–109.

3. Gerasimova T. V., Zyul'kina L. A., Mikulyak N. I. [i dr.] Sovremennyy vzglyad na problemu biologicheskih effektov radiacionnogo izlucheniya na zhivye organizmy (obzor literatury) // Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Medicinskie nauki. 2020. № 3 (55). S. 104–117. DOI:https://doi.org/10.21685/2072-3032-2020-3-10.

4. Devic C., Ferlazzo M. L., Foray N. Influence of individual radiosensitivity on the adaptive response phenomenon: toward a mechanistic explanation based on the nucleo-shuttling of ATM Protein // Dose-Response. 2018. Vol. 16, No. 3. P. DOI:https://doi.org/10.1177/1559325818789836.

5. Chukova Yu. P. Radiacionnyy gormezis: fizicheskiy smysl i znachimost' dlya estestvoznaniya // Yaderno-fizicheskie issledovaniya i tehnologii v sel'skom hozyaystve: sbornik dokladov mezhdunarodnoy nauchno-prakticheskoy konferencii, Obninsk, 2020. S. 103–109.

6. Jargin S. V. Radiation safety and hormesis // Frontiers in Public Health. 2020. Vol. 8. DOI:https://doi.org/10.3389/fpubh.2020.00278.

7. Shibamoto Y., Nakamura H. Overview of biological, epidemiological, and clinical evidence of radiation hormesis // International journal of molecular sciences. 2018. Vol. 19. No. 8. Article number 2387. DOI:https://doi.org/10.3390/ijms19082387.

8. Puzan N. D., Cheshik I. A. Molekulyarnye mehanizmy deystviya ioniziruyuschego izlucheniya. Vliyanie oblucheniya na belok (obzor literatury) // Mediko-biologicheskie problemy zhiznedeyatel'nosti. 2023. № 1 (29). S. 14–26. DOI:https://doi.org/10.58708/2074-2088.2023-1(29)-14-26.

9. Hirano S. I., Ichikawa Y., Sato B., Yamamoto H., Takefuji Y., Satoh F. Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent // International Journal of Molecular Sciences. 2021. Vol. 22, No. 9. Article number 4566. DOI:https://doi.org/10.3390/ijms22094566.

10. Obrador E., Salvador-Palmer R., Villaescusa J. I., Gallego E., Pellicer B., Estrela J. M., Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry // Antioxidants. 2022. Vol. 11, No. 6. Article number 1098. DOI:https://doi.org/10.3390/antiox11061098.

11. Vasin M. V., Ushakov I. B. Radiomodulyatory kak sredstva biologicheskoy zaschity ot okislitel'nogo stressa pri vozdeystvii ioniziruyuschey radiacii // Uspehi sovremennoy biologii. 2020. T. 140, № 1. S. 3–18. DOI:https://doi.org/10.31857/S0042132420010081.

12. Dyukina A. R., Zaichkina S. I., Rozanova O. M. [i dr.] Vliyanie infrakrasnogo i rentgenovskogo izlucheniy na produkciyu aktivnyh form kisloroda v krovi i indukciyu citogeneticheskih povrezhdeniy v kostnom mozge myshey in vivo // Radiacionnaya biologiya. Radioekologiya. 2011. T. 51, № 5. S. 536–541.

13. Eckert D., Rapp F., Tsedeke A. T., Molendowska J, Lehn R., Langhans M., Fournier C., Rödel F., Hehlgans S.. ROS- and Radiation Source-Dependent Modulation of Leukocyte Adhesion to Primary Microvascular Endothelial Cells // Cells. 2021. Vol. 11, No. 1. Article number 72. DOI:https://doi.org/10.3390/cells11010072.

14. Shimura N., Kojima S. The lowest radiation dose having molecular changes in the living body // Dose-Response. 2018. Vol. 16, No. 2. DOI:https://doi.org/10.1177/1559325818777326.

15. Starodubceva M. N., Chelnokova I. A., Shklyarova A. N. [i dr.] Parametry redoks-sostoyaniya plazmy krovi i nanoarhitektoniki poverhnosti eritrocitov pri obluchenii cel'noy krovi krys rentgenovskim izlucheniem in vitro // Aktual'nye problemy mediciny: sbornik nauchnyh statey respublikanskoy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem. Gomel', 2021. T. 1. S. 19–22.

16. Romodin L. A. Chemiluminescence Detection in the Study of Free-Radical Reactions. Part 1 // Acta Naturae. 2021. Vol. 13, No. 3. Pp. 90–100. DOI:https://doi.org/10.32607/actanaturae.10912.

17. Agaeva E. V., Petrov V. N., Konoplyannikov A.G., Lepehina L. A., Sayapina E. V., Popovkina O. E. Osobennosti vliyaniya obluchennyh kostnomozgovyh mezenhimnyh stromal'nyh kletok na produkciyu makrofagami citokinov i aktivnyh form kisloroda // Radiacionnaya biologiya. Radioekologiya. 2019. T. 59, № 4. S. 377–387. DOI:https://doi.org/10.1134/S0869803119040040.

18. Abramova M. S., Kon'kova M. S., Momot V. Yu., Kal'yanov A. A. Molekulyarnyy otvet fibroblastov kozhi cheloveka s mutaciey m.14441 T>C na vozdeystvie ioniziruyuschego izlucheniya v malyh i srednih dozah // Medicinskaya genetika 2020. T. 19, № 9. S. 91–93. DOI:https://doi.org/10.25557/2073-7998.2020.09.91-93.

19. Turicyna E. G., Fedotova A. S. Hemilyuminescentnyy analiz v veterinarnoy medicine: opyt i perspektivy primeneniya: monografiya. Krasnoyarsk: Krasnoyarskiy gosudarstvennyy agrarnyy universitet, 2022. 152 s.

20. Fedotova A. S. Osobennosti rascheta pogloschennyh doz oblucheniya dlya krupnogo rogatogo skota v usloviyah Krasnoyarskogo kraya // Agrarnyy vestnik Urala. 2021. № 12 (215). S. 77–86. DOI:https://doi.org/10.32417/1997-4868-2021-215-12-77-86.

Login or Create
* Forgot password?