Abstract. The study of the effect of heat stress on the reproductive parameters of pigs is an urgent problem all over the world. Knowing the degree of influence of heat stress on pigs of different breeds will allow you to choose economically sound solutions to this problem in specific conditions. The propose is to study the effect of heat stress on some indicators of reproduction of sows of different breeds (large white, landrace, duroc, MAXGRO). Methods. The study was conducted on a large pig breeding complex. The material for the analysis was data on changes in air temperature in the breeding farm in the period from June to August (13 weeks) and data on the fertilization and duration of pregnancy of sows fertilized during this period and the size of the offspring obtained from them. Scientific novelty. For the first time, a comparative analysis of the effect of heat stress on fertilization, duration of pregnancy and the size of the offspring of sows of four breeds – large white, landrace, duroc, MAXGRO – was carried out on a wide population of pigs. Different sensitivity of sows to heat stress was revealed. Results. From the 4th to the 6th week of the experiment, the sows were in a state of increasing heat stress – the average daily temperature during this period increased to 27.68 ± 1.36 °C. The negative effect of hyperthermia on fertilization was recorded with a delay of 1–3 weeks, depending on the breed. The most sensitive to heat stress were sows of the duroc breed – fertilization decreased by 25.00 % compared to the pre-stress period, the least – sows of the large white breed – fertilization decreased by 9.82 %. The duration of pregnancy was not affected by heat stress. As well as fertilization, heat stress had a negative effect on the size of the litter. The most sensitive were sows of duroc and MAXGRO breeds – the litter size decreased by 3.77 and 3.61 heads compared to the pre-stress period, the least – sows of the large white breed, the size of the litter decreased by 0.38 heads. duroc sows are the most sensitive to heat stress, then, according to sensitivity reduction, MAXGRO, landrace and large white.
heat stress, hyperthermia, pig, fertilization, duration of pregnancy, litter size, pig breeds
1. Mayorga E. J., Renaudeau D., Ramirez B. C., Ross J. W., Baumgard L. H. Heat stress adaptations in pigs // Animal Frontiers. 2019. Vol. 9, No. 1. Pp. 54–61. DOI:https://doi.org/10.1093/af/vfy035.
2. Mayorga E., Ross J., Keating A., Rhoads R., Baumgard L. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction // Theriogenology. 2020. Vol. 154. Pp. 73–83. DOI:https://doi.org/10.1016/j.theriogenology.2020.05.023.
3. Baumgard L. H., Rhoads Jr. R. P. Effects of heat stress on postabsorptive metabolism and energetic // Annual Review of Animal Biosciences. 2013. Vol. 1, No. 1. Pp. 311–337. DOI:https://doi.org/10.1146/annurev-animal-031412-103644.
4. Gonzalez-Rivas P. A., Chauhan S. S., Ha M., Fegan N., Dunshea F. R., Warner R. D. Effects of heat stress on animal physiology, metabolism, and meat quality: a review // Meat science. 2020. Vol. 162. Article number 108025. DOI:https://doi.org/10.1016/j.meatsci.2019.108025.
5. Renaudeau D., Collin A., Yahav S., De Basilio V., Gourdine J.-L., Collier R. Adaptation to hot climate and strategies to alleviate heat stress in livestock production // Animal: an International Journal of Animal Bioscience. 2012. Vol. 6, No. 5. Pp. 707–728. DOI:https://doi.org/10.1017/S1751731111002448.
6. Thornton P., Nelson G., Mayberry D., Herrero M. Thornton Increases in extreme heat stress in domesticated livestock species during the twenty‐first century // Global Change Biology. 2021. Vol. 27. No. 22. Pp. 5762–5772. DOI:https://doi.org/10.1111/gcb.15825.
7. Wettemann R., Bazer F. Influence of environmental temperature on prolificacy of pigs // Journal of Reproduction and Fertility. Supplement. 1985. Vol. 33. Pp. 199–208.
8. Bracke M. B. M. Review of wallowing in pigs: Description of the behaviour and its motivational basis // Applied Animal Behaviour Science. 2011. Vol. 132. No. 1-2. DOI:https://doi.org/10.1016/j.applanim.2011.01.002
9. Bjerg B., Brandt P., Pedersen P., Zhang G. Sows’ responses to increased heat load: A review // Journal of Thermal Biology. 2020. Vol. 94. Article number 102758. DOI:https://doi.org/10.1016/j.jtherbio.2020.102758.
10. He J., Zheng W., Lu M., Yang X., Xue Y., Yao W. A controlled heat stress during late gestation affects thermoregulation, productive performance, and metabolite profiles of primiparous sow // Journal of Thermal Biology. 2019. Vol. 81. Pp. 33–40. DOI:https://doi.org/10.1016/j.jtherbio.2019.01.011.
11. He J., Zheng W., Tao C., Guo H., Xue Y., Zhao R., Yao W. Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model // Environmental Pollution. 2020. Vol. 266. Article number 115111. DOI:https://doi.org/10.1016/j.envpol.2020.115111.
12. Johnson J. S., Stewart K. R., Safranski T. J., Ross J. W., Baumgard L. H. In utero heat stress alters postnatal phenotypes in swine // Theriogenology. 2020. Vol. 154. Pp. 110–119. DOI:https://doi.org/10.1016/j.theriogenology.2020.05.013.
13. Zhao W., Artaiz O., Iqbal Y., Le H. H., DiGiacomo K., Leury B. J., Cottrell J. J. Heat stress of gilts around farrowing causes oxygen insufficiency in the umbilical cord and reduces piglet survival // Animal. 2022. Vol. 16, No. 11. Article number 100668. DOI:https://doi.org/10.1016/j.animal.2022.100668.
14. Johnson J. S., Baumgard L. H. Physiology symposium: Postnatal consequences of in utero heat stress in pigs // Journal of Animal Science. 2019. Vol. 97. No. 2. Pp. 962–971. DOI:https://doi.org/10.1093/jas/sky472.
15. Tuell J. R., Nondorf M. J., Maskal J. M., Johnson J. S., Kim Y. H. B. Impacts of in utero heat stress on carcass and meat quality traits of market weight gilts // Animals. 2021. Vol. 11. No. 3. Article number 717. DOI:https://doi.org/10.3390/ani11030717.
16. Gutman M. P., Gorb N. N., Sorokoletova V. M. Vliyanie teplovogo stressa na kachestvo spermoprodukcii hryakov-proizvoditeley raznyh porod i ee oplodotvoryayuschuyu sposobnost' // Vestnik NGAU (Novosibirskiy gosudarstvennyy agrarnyy universitet). 2021. № 2 (59). S. 106–114. DOI:https://doi.org/10.31677/2072-6724-2021-59-2-106-114.
17. Gutman M., Gorb N. N., Sorokoletova V. M. Vliyanie teplovogo stressa // Zhivotnovodstvo Rossii. 2023. № S1. S. 11–13. DOI:https://doi.org/10.25701/ZZR.2022.03.03.001.
18. Collier R. J., Gebremedhin K. G. Thermal biology of domestic animals // Annual Review of Animal Biosciences. 2015. Vol. 3. No. 1. Pp. 513–532. DOI:https://doi.org/10.1146/annurev-animal-022114-110659.
19. Wildt D. E., Riegle G. D., Dukelow W. R. Physiological temperature response and embryonic mortality in stressed swine // American Journal of Physiology-Legacy Content. 1975. Vol. 229. No. 6. Pp. 1471–1475. DOI:https://doi.org/10.1152/ajplegacy.1975.229.6.1471.
20. Liu F., Zhao W., Le H. H., Cottrell J. J., Green M. P., Leury B. J., Dunshea F.R. Bell A. W. What have we learned about the effects of heat stress on the pig industry? // Animal. 2022. Vol. 16. Artricle number 100349. DOI:https://doi.org/10.1016/j.animal.2021.100349.
21. Guevara R. D., Pastor J. J., Manteca X., Tedo G., Llonch P. Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs // PloS One. 2022. Vol. 17. No. 5. Article number e0266524. DOI:https://doi.org/10.1371/journal.pone.0266524.
22. Huynh T. T. T., Aarnink A. J. A., Verstegen M. W. A. Gerrits W. J. J., Heetkamp M. J. W., Kemp B., Canh T. T. Effects of increasing temperatures on physiological changes in pigs at different relative humidities // Journal of Animal Science. 2005. Vol. 83. No. 6. Pp. 1385–1396. DOI:https://doi.org/10.2527/2005.8361385x.
23. Quiniou N., Noblet J. Influence of high ambient temperatures on performance of multiparous lactating sows // Journal of Animal Science. 1999. Vol. 77. No. 8. Pp. 2124–2134. DOI:https://doi.org/10.2527/1999.7782124x.
24. Huang S. Y., Kuo Y. H., Lee Y. P., Tsou H. L., Lin E. C., Ju C. C., Lee W. C. Association of heat shock protein 70 with semen quality in boars // Animal Reproduction Science. 2000. Vol. 63. No. 3-4. Pp. 231–240. DOI:https://doi.org/10.1016/S0378-4320(00)00175-5.
25. Wettemann R. P., Wells M. E., Omtvedt I. T., Pope C. E., Turman E. J Influence of elevated ambient temperature on reproductive performance of boars // Journal of Animal Science. 1976. Vol. 42. No. 3. Pp. 664–669. DOI:https://doi.org/10.2527/jas1976.423664x.