EFFICIENCY OF SURFACE COMPOSTING OF TOBACCO DUST USING MICROBIAL MIXTURES
Abstract and keywords
Abstract (English):
Abstract. Tobacco dust is the main waste in the production of smoking products. The purpose is to study the possibility of tobacco dust utilization by surface composting together with microbial mixtures “Stimiks Kompost”, “Probioks Agro” and “Geostim”, directly in the field conditions, contributing to the restoration of soil fertility. Methods. In the years of research (2020–2021) tobacco dust was applied in doses of 5 and 8 t/ha in pure form and together with microbiological preparations. Scientific novelty. The method of using tobacco production waste as a fertilizer together with microbiological preparations is proposed. Results. It was established that for 30–60 days, tobacco dust application together with destructors, the content of basic nutrient elements in the soil increased: ammonium nitrogen form by 65–207 %, nitrate nitrogen by 83–225 %, available phosphorus by 21–107 %, exchangeable potassium by 80–194 %. Also Increasing of soil biological activity indicators was determined. The process of nitrifying ability of soil increases by 70–194 %, cellulose-destroying activity of microorganisms increases by 27–133 %, the amount of produced CO2 from soil increases by 61–129 %. The content of organic matter (humus) increases up to 4.2–5.5 % for the period of counting (4.0–4.7 % on the reference). Increase of moisture-holding capacity of soils in variants of experiment with tobacco dust and destructors was established (soil moisture for the period of research amounted to 18.4–25.5 %, in control – 17.1–18.7 %). The best results for surface composting of tobacco dust were obtained under wet conditions in 2021 (Hydrothermal coefficient (HTC) = 1.38), in 2020 HTC = 0.87. Mycological analysis revealed a decrease in soil infestation with pathogenic micro-mycetes in the variants of the experiment with tobacco waste. The increase in yield of bitter pepper (variety Baraniy rog) on the background of a mixture of tobacco dust and biodegraders amounted to 12–32 % (2020), seed cucumber (variety Dal’nevostochnyy 27) – 20–33 %.

Keywords:
waste, tobacco dust, Stimiks Kompost, Probioks Agro, Geostim, surface composting, soil fertility, yield
Text
Publication text (PDF): Read Download
References

1. Sifola M. I., et al. Potential of pre-harvest wastes of tobacco (Nicotiana tabacum L.) crops, grown for smoke products, as source of bioactive compounds (phenols and flavonoids) // Sustainability. 2021. Vol. 13, No. 4. Article number 2087. DOI:https://doi.org/10.3390/su13042087.

2. Banožić M., et al. Optimization of MAE for the separation of nicotine and phenolics from tobacco waste by using the response surface methodology approach // Molecules. 2021. Vol. 26, No. 14. Article number 4363. DOI:https://doi.org/10.3390/molecules26144363.

3. Dovorogwa H., Harding K. Exploring the Use of Tobacco Waste as a Metal Ion Adsorbent and Substrate for Sulphate-Reducing Bacteria during the Treatment of Acid Mine Drainage // Sustainability. 2022. Vol. 14, No. 21. Article number 14333. DOI:https://doi.org/10.3390/su142114333.

4. Ahmed H. E., et al. Cultivation of Canola (Brassica napus L.) using composted agro-industrial waste // Egyptian Journal of Chemistry. 2019. Vol. 62, No. 9. Rr. 1637–1647. DOI:https://doi.org/10.21608/EJCHEM.2019.7256.1592.

5. Ayilara M. S., et al. Waste management through composting: Challenges and potentials // Sustainability. 2020. Vol. 12, No. 11. Article number 4456. DOI:https://doi.org/10.3390/su12114456.

6. Delibacak S., Ongun A. R. Influence of composted tobacco waste and farmyard manure applications on the yield and nutrient composition of lettuce (Lactuca sativa L. var. capitata) // Eurasian Journal of Soil Science. 2016. Vol. 5, No. 2. Rr. 132–138. DOI:https://doi.org/10.18393/ejss.2016.2.132-138.

7. Cercioglu M. The Impact of Soil Conditioners on Some Chemical Properties of Soil and Grain Yield of Corn (Zea Mays L.) // Journal of Agricultural Sciences. 2019. No. 25 (2). Rr. 224–231. DOI:https://doi.org/10.15832/ankutbd.399164.

8. Abu T. The cigarette factory waste vermicompost effect of Cucumis melol // International Journal of Advances in Engineering & Technology. 2013. Vol. 6, Iss. 5. Pp. 1942–1947.

9. Binh T. N., Duyen H. D., Nam B. H., Thang T. D., Paul M., Dung T. H., Son T. C. Composted tobacco waste increases the yield and organoleptic quality of leaf mustard // Agrosystems, Geosciences & Environment. 2022. Vol. 5, No. 3. DOI:https://doi.org/10.1002/agg2.20283.

10. Bangxi Z., Rongxiu Y., Yi T., Beibei F., et al. Evaluation of Maturity and Greenhouse Gas Emission in Co-Composting of Chicken Manure with Tobacco Powder and Vinasse/Mushroom Bran // Processes. 2021. Vol. 9, Iss. 12, Pr. 2105–2115.

11. Bangxi Z., Tianhong F., Chung-Yu G., Shihao C., Beibei F., Yi T., Wenhai L., Quanquan W., Guoxue L., Yutao P. Environmental Life Cycle Assessments of Chicken Manure Compost Using Tobacco Residue, Mushroom Bran, and Biochar as Additives // Sustainability. 2022. Vol. 14 (9). Rr. 49–76. DOI:https://doi.org/10.3390/su14094976.

12. Tzavara S., Darras A. I., Assimakopoulou A. Tobacco dust waste as an alternative medium to grow geranium (Pelargonium × hortorum) plants // Advances in Horticultura Science. 2019. No. 33 (2). Rr. 295–298. DOI:https://doi.org/10.13128/ahs-23986.

13. Szwed A., Bohacz J. Enzymatic activity and certain chemical properties of grey-brown podzolic soil (haplic luvisol) amended with compost of tobacco wastes // Archives of Environmental Protection. 2014. Vol. 40, No. 3. Rr. 61–73.

14. Marino J. T., Márcio H. L., Clesio G., Leandro B., Claudio H. K. Land disposal potential of tobacco processing residues // Ciência Rural. 2011. Vol. 41, No. 2. Rr. 236–241.

15. Hossain M. M. Tobacco dust combined with fertilizers improves the soil health and profit of rice cultivation in silty loam soil of Bangladesh // Journal of Agriculture, Food and Environment (JAFE). 2021. Vol. 2, №. 1. Rr. 45–49. DOI:https://doi.org/10.47440/JAFE.2021.2108.

16. Sifola M. I., Carrino L., Cozzolino E., del Piano L., Graziani G., Ritieni A. Potential of pre-harvest wastes of tobacco (Nicotiana tabacum L.) crops, grown for smoke products, as source of bioactive compounds (phenols and flavonoids) // Sustainability. 2021. Vol. 13, No. 4. Article number 2087. DOI:https://doi.org/10.3390/su13042087.

17. Hüseyin H. K., Nur O. Effects of Tobacco Waste and Its Compost on The Health of a Typic Xerofluvent Soil and The Yield of Paprika (Capsicum annuum L.) // ISPEC Journal of Agricultural Sciences. 2020. Vol. 4, No. 2. Rr. 319–345. DOI:https://doi.org/10.46291/ISPECJASvol4iss2pp184-210.

18. Plotnikova T. V., Sidorova N. V. Vozmozhnost' ispol'zovaniya othodov tabachnogo proizvodstva v kachestve organicheskogo udobreniya // Sbornik nauchnyh trudov Kubanskogo gosudarstvennogo agrarnogo universiteta. Krasnodar, 2013. S. 167–173.

19. Plotnikova T. V., Salomatin V. A., Egorova E. V. Ispol'zovanie othodov tabachnoy promyshlennosti v kachestve organicheskogo udobreniya // Mezhdunarodnyy sel'skohozyaystvennyy zhurnal. 2017. № 4. S. 54–56.

20. Patent № 2710727 Rossiyskaya Federaciya. Sposob povysheniya plodorodiya pochvy s ispol'zovaniem smesi tabachnoy pyli i ptich'ego pometa / T. V. Plotnikova, V. A. Salomatin, E. V. Egorova, N. V. Sidorova. № 2019107451; zayavl. 15.03.2019; opubl. 10.01.2020, Byul. № 1.

21. Patent № 2646053 Rossiyskaya Federaciya. Sposob povysheniya plodorodiya pochv s ispol'zovaniem tabachnoy pyli / T. V. Plotnikova, V. A. Salomatin, I. I. Murzinova, E. V. Egorova. № 2017114682; zayavl. 26.04.2017; opubl. 01.03.2018, Byul. №7.

22. Sidorova N. V., Egorova E. V., Plotnikova T. V. Vliyanie sovmestnogo primeneniya tabachnoy pyli i defekacionnoy gryazi na plodorodie chernozema vyschelochennogo i produktivnost' perca gor'kogo v usloviyah Krasnodarskogo kraya // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 1 (94). S. 143–151. DOI:https://doi.org/10.21515/1999-1703-94-143-151.

Login or Create
* Forgot password?