THE GENETIC POTENTIAL OF TOXIGENIC ESCHERICHIA COLI ISOLATED FROM CALVES AND PIGLETS
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The study aims to genetically characterize diarrhoeagenic Escherichia coli isolated from cattle and pigs. The main propose is genetic potential responsible for the production of exotoxins in pathogenic E. coli, the causative agents of escherichiosis in calves and piglets. The scientific novelty of the work consists in deciphering the genomes of diarrheogenic E. coli with the presence of nucleotide sequences of several exotoxins, including thermolabile, thermostable and shigap-like, as well as colicins, hemolysins and cyclomodulins, which have pathogenetic significance in the development of escherichia infection in calves and piglets. The study was carried out using microbiological and molecular genetic methods of research and mass spectrometric analysis. As a result, 135 E. coli isolates were subjected to genetic screening by polymerase chain reaction in agarose gel. It was found that 68 (50.36 %) escherichia had toxigenicity markers, while the thermolabile exotoxin gene was recorded more often than others (48.5 %), and the majority was recorded in E. coli isolated from piglets (29.4 %). In 19 (27.9 %) isolates, the presence of genes encoding the production of several exotoxins was established. According to the results of the polymerase-chain reaction, 4 E. coli isolates with a different set of nucleotide sequences responsible for the production of two or more exotoxins at the same time were subjected to genome-wide sequencing. The Escherichia genomes were assembled and annotated and deposited in the NCBI Prokaryotic Genome Annotation Pipeline database under the general number BioProject PRJNA887444. Further studies of E. coli genes and their role in the pathogenic potential of escherichiosis pathogens are needed for the subsequent development of effective means of preventing and controlling infection.

Keywords:
Escherichia coli, genetic diversity, whole-genome sequencing, exotoxins, pathogenicity, toxigenicity, calves, piglets
Text
Publication text (PDF): Read Download
References

1. Fleckenstein J. M., Kuhlmann F. M. Enterotoxigenic Escherichia coli Infections // Current Infectious Disease Reports. 2020. No. 21 (3). Article number 9. DOI:https://doi.org/10.1007/s11908-019-0665-x.

2. Lee M. S, Tesh V. L. Roles of Shiga Toxins in Immunopathology // Toxins. 2019. No. 11 (4). Article number 212. DOI:https://doi.org/10.3390/toxins11040212.

3. Carlini F., Maroccia Z., Fiorentini C., Travaglione S., Fabbri A. Effects of the Escherichia coli Bacterial Toxin Cytotoxic Necrotizing Factor 1 on Different Human and Animal Cells: A Systematic Review // International Journal of Molecular Sciences. 2021. No. 22. Article number 12610. DOI:https://doi.org/10.3390/ijms222212610.

4. Zegeye E. D., Govasli M. L., Sommerfelt H., Puntervoll P. Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin // Human Vaccines & Immunotherapeutics. 2019. No. 15 (6). Pp. 1379‒1388. DOI:https://doi.org/10.1080/21645515.2018.1496768.

5. Tischenko A. S. Stepanenko A. V., Terehov V. I. Ekzotoksiny patogennyh Escherichia coli // Veterinariya Kubani. 2020. № 5. S. 3–7. DOI:https://doi.org/10.33861/2071-8020-2020-5-3-7.

6. Koschaev A. G., Chernyh O. Yu., Tischenko A. S. [i dr.] Rasprostranennost' ostryh kishechnyh infekciy telyat i porosyat v Krasnodarskom krae // Veterinariya, zootehniya i biotehnologiya. 2023. № 10. S. 65–75. DOI:https://doi.org/10.36871/vet.zoo.bio.202310008.

7. Medrano-Galarza C., LeBlanc S. J., Jones-Bitton A., et al. Associations between management practices and within-pen prevalence of calf diarrhea and respiratory disease on dairy farms using automated milk feeders // Journal of Dairy Science. 2018. No. 101 (3). Pp. 2293–2308. DOI:https://doi.org/10.3168/jds.2017-13733.

8. Dubreuil J. D. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals // Journal of Microbiology. 2019. No. 57 (7). Pp. 541‒549. DOI:https://doi.org/10.1007/s12275-019-8651-4.

9. Pakbin B., Brück W. M., Rossen J. W. A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review // International Journal of Molecular Sciences. 2021. No. 22 (18). Article number 9922. DOI:https://doi.org/10.3390/ijms22189922.

10. Wang H., Zhong Z., Luo Yu, Cox E., Devriendt B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity // Toxins. 2019. No. 11 (1). Article number 24. DOI:https://doi.org/10.3390/toxins11010024.

11. Govasli M. L., Diaz Y., Zegeye E. D., Darbakk C. et al. Purification and Characterization of Native and Vaccine Candidate Mutant Enterotoxigenic Escherichia coli Heat-Stable Toxins // Toxins. 2018. No. 10 (7). Article number 274. DOI:https://doi.org/10.3390/toxins10070274.

12. Menge C. Molecular Biology of Escherichia coli Shiga Toxins Effects on Mammalian Cells // Toxins. 2020. No. 12 (5). Article number 345. DOI:https://doi.org/10.3390/toxins12050345.

13. Feuerstein A., Scuda N., Klose C., Hoffmann A., Melchner A., Boll K., Riehm J. M. Antimicrobial Resistance, Serologic and Molecular Characterization of E. coli Isolated from Calves with Severe or Fatal Enteritis in Bavaria, Germany // Antibiotics. 2021. Vol. 11. No. 1. Article number 23. DOI:https://doi.org/10.3390/antibiotics11010023.

14. Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. Using SPAdes de novo assembler // Current Protocols in Bioinformatics. 2020. No. 70 (1). Article number 102. DOI:https://doi.org/10.1002/cpbi.102.

15. Rose R., Golosova O., Sukhomlinov D., Tiunov A., Prosperi M. Flexible design of multiple metagenomics classification pipelines with UGENE // Bioinformatics. 2019. No. 35 (11). Pp. 1963–1965. DOI:https://doi.org/10.1093/bioinformatics/bty901.

16. Mikheenko A., Prjibelski A., Saveliev V., Antipov D., Gurevich AVersatile genome assembly evaluation with QUAST-LG // Bioinformatics. 2018. No. 34 (13). Pp. i142–i150. DOI:https://doi.org/10.1093/bioinformatics/bty266.

17. Li W., O’Neill K. R., Haft D. H., et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation // Nucleic Acids Research. 2021. No. 49 (1). Pp. 1020–1028. DOI:https://doi.org/10.1093/nar/gkaa1105.

18. Escherichia coli strain:533 [Elektronnyy resurs]. URL: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA887444 (data obrascheniya: 26.01.2024).

19. Frey J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics // Toxins. 2019. No. 11. Article number 719. DOI:https://doi.org/10.3390/toxins11120719.

20. Duan Q., Xia P., Nandre R., Zhang W., Zhu G. Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli // Frontiers in Cellular and Infection Microbiology. 2019. No. 9. Article number 292. DOI:https://doi.org/10.3389/fcimb.2019.00292.

21. Li Ya., Li Yu., Mengist H. M., et al. Structural Basis of the Pore-Forming Toxin/Membrane Interaction // Toxins. 2021. No. 13. Article number 128. DOI:https://doi.org/10.3390/toxins13020128.

22. Cameron A., Zaheer R., Adator E. H., Barbieri R. Bacteriocin Occurrence and Activity in Escherichia coli Isolated from Bovines and Wastewater // Toxins. 2019. No. 11. Article number 475. DOI:https://doi.org/10.3390/toxins11080475.

23. Murase K. Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy // Toxins. 2022. No. 14 (2). Article number 78. DOI:https://doi.org/10.3390/toxins14020078.

24. Schwidder M., Heinisch L. and Schmidt H. Genetics, Toxicity, and Distribution of Enterohemorrhagic Escherichia coli Hemolysin // Toxins. 2019. No. 11. Article number 502. DOI:https://doi.org/10.3390/toxins11090502.

Login or Create
* Forgot password?