Russian Federation
Abstract. The purpose of this paper is to study the inbreeding change of Holstein cattle in Sverdlovsk region and to show the correlation between genomic and estimated inbreeding. Methods. The study was conducted in six farms of the Sverdlovsk region and included 512 cows and heifers with date of birth from 2007 to 2022 and 12 breeding bulls. Chips GGP Bovine 150K (Neogen, USA) and Bovine 50K (Illumina, USA) were used for genotyping. Genome inbreeding estimates F were conducted with --het function in PLINK v1.9. Homozygosity inbreeding coefficient FROH was calculated with “sliding window” package of detectRUNS; FPED was taken from SELEX database, where it was calculated by pedigrees with Wright-Kislovsky formula. Scientific novelty. The comparison of genomic inbreeding for different age groups and estimation of correlations with pedigree inbreeding was conducted in Sverdlovsk region for the first time. Results. Our studies show that inbreeding coefficients increase radically from younger to older age groups. Holstein breed bulls show the highest value of inbreeding. At the same time heterozygosity level, estimated with sMLH tends to decrease with age. In addition, a strong correlation between estimated by pedegree inbreeding FPED and date of birth, as well as weak correlations between FPED and genomic coefficients (which have strong correlations with each other) were established.
dairy cattle, inbreeding, DNA chips, F, FROH, FPED, sMHL, Holstein cattle
1. Stachowicz K., Sargolzaei M., Miglior F., Schenkel F. S. Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle // Journal of Dairy Science. 2011; 94, No. 10. Pp. 5160–5175. DOI:https://doi.org/10.3168/jds.2010-3308
2. Wright S. Coefficients of Inbreeding and Relationship // The American Naturalist. 1922. Vol. 56, No. 645. Pp. 330–338.
3. Kislovskiy D. A. Izbrannye sochineniya. Moskva: Kolos, 1965. 465 s.
4. Donnik I. M., Mymrin V. S., Loretc O. G., Sevost'yanov M. Yu., Lihodeevskaya O. E., Barashkin M. I. Raspredelenie korov v plemennyh organizaciyah sverdlovskoy oblasti po stepeni inbridinga // Agrarnyy vestnik Urala. 2013. № 4. S. 30–32.; EDN: https://elibrary.ru/RBLUEL
5. Signer-Hasler H., Burren A., Neuditschko M., Frischknecht M., Garrick D., Stricker C., Gredler B., Bapst B., Flury C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations // Genetics Selection Evolution. 2017. Vol. 49. Article number 83. DOI:https://doi.org/10.1186/s12711-017-0358-6; ; EDN: https://elibrary.ru/SDWKTT
6. Addo S., Klingel S., Hinrichs D., Thaller G. Runs of Homozygosity and NetView analyses provide new insight into the genome-wide diversity and admixture of three German cattle breeds // PLoS ONE. 2019. Vol. 14, No. 12. Article number e0225847. DOI:https://doi.org/10.1371/journal.pone.0225847; ; EDN: https://elibrary.ru/MWFZWK
7. Kardos M., Luikart G., Allendorf F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees // Heredity. 2015. Vol. 115, No. 1. Pp. 63–72. DOI:https://doi.org/10.1038/hdy.2015.17
8. Donnik I. M., Mymrin V. S., Loretc O. G., Sevost'yanov M. Yu., Lihodeevskaya O. E., Barashkin M. I. Vliyanie inbridinga na zhivuyu massu korov, ekonomicheskaya effektivnost' inbridinga i rekomendacii proizvodstvu // Agrarnyy vestnik Urala. 2013. № 6. S. 6–8.; EDN: https://elibrary.ru/RBLUVJ
9. Donnik I. M., Mymrin V. S., Loretc O. G., Sevost'yanov M. Yu., Lihodeevskaya O. E., Barashkin M. I. Vliyanie inbridinga na molochnuyu produktivnost', kachestvo moloka i vosproizvoditel'nuyu sposobnost' korov // Agrarnyy vestnik Urala. 2013. № 5. S. 15–19.; EDN: https://elibrary.ru/PJCVAN
10. Gorelik O. V., Yurchenko N. A., Lihodeevskaya O. E., Harlap S. Yu. Effektivnost' primeneniya inbridinga v molochnom skotovodstve // Logistika v APK: tendencii i perspektivy razvitiya: sbornik statey po materialam Vserossiyskoy nauchnoy konferencii. Novosibirsk, 2020. S. 101–104.; EDN: https://elibrary.ru/ODWUKM
11. Yurchenko N. A., Gorelik O. V., Lihodeevskaya O. E. Vliyanie stepeni inbridinga na produktivnoe dolgoletie korov // Agrarnaya nauka – sel'skomu hozyaystvu: sbornik materialov XV Mezhdunarodnoy nauchno-prakticheskoy konferencii. V 2 kn. Kn. 2, Barnaul, 2020. S. 265–266.; EDN: https://elibrary.ru/INFVRZ
12. Nedashkovskiy I. S., Kostyunina O. V., Volkova V. V., Ermilov A. N., Sermyagin A. A. Ocenka plemennoy cennosti bykov-proizvoditeley golshtinskoy porody po kachestvu potomstva v svyazi s urovnem gomozigotnosti po STR-markeram // Vestnik RGATU. 2019. № 3 (43). S. 36–42.
13. Nedashkovskiy I. S., Konte A. F., Volkova V. V., Sermyagin A. A. Vliyanie urovnya gomozigotnosti po STR-markeram bykov-proizvoditeley golshtinskoy porody na pokazateli nasledovaniya tipa teloslozheniya ih docherey na osnove lineynoy // Izvestiya nizhnevolzhskogo agrouniversitetskogo kompleksa. 2022. № 4. S. 294–302. DOI:https://doi.org/10.32786/2071-9485-2022-04-35; ; EDN: https://elibrary.ru/HMKKTG
14. Abdel'manova A. S., Docev A. V., Mishina A. I., Shahin A. V., Zinov'eva N. A. Genomnaya ocenka inbridinga u krupnogo rogatogo skota holmogorskoy, yaroslavskoy i golshtinskoy porod // Molochnoe i myasnoe skotovodstvo. 2019. № 8. S. 21–23. DOI:https://doi.org/10.33943/MMS.2019.71.27.007; ; EDN: https://elibrary.ru/RMNZIQ
15. Gollandskaya poroda // Sel'skohozyaystvennyy enciklopedicheskiy slovar'. Moskva: Sovetskaya enciklopediya, 1989. S. 108.
16. Li C. C., Horvitz D. G. Some methods of estimating the inbreeding coefficient // American Journal of Human Genetics. 1953. Vol. 5. Pp. 107–117.
17. Gibson J., Morton N.E., Collins A. Extended tracts of homozygosity in outbred human populations // Human Molecular Genetics. 2006. Vol. 15, No. 5. Pp. 789–795. DOI:https://doi.org/10.1093/hmg/ddi493.; EDN: https://elibrary.ru/IPCFDL
18. Slate J., David P., Dodds K. G., Veenvliet B. A., Glass B. C., Broad T. E., McEwan J. C. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data // Heredity. 2004. Vol. 93. Pp. 255–265. DOI:https://doi.org/10.1038/sj.hdy.6800485.
19. Dadousis C., Ablondi M., Cipolat-Gotet C., van Kaam J. T., Finocchiaro R., Marusi M., Cassandro M., Sabbioni A., Summer A. Genomic inbreeding coefficients using imputed genotypes: assessing differences among SNP panels in Holstein-Friesian dairy cows // Frontiers in Veterinary Science. 2023. No. 10. Article number 1142476. DOI:https://doi.org/10.3389/fvets.2023.1142476.; ; EDN: https://elibrary.ru/FZKQFV
20. Hajihosseinlo A., Nejati-Javaremi A., Miraei-Ashtiani S. R. Genetic structure analysis in several populations of cattle using SNP genotypes // Animal Biotechnology. 2023. Vol. 34, No. 2. Pp. 288–300. DOI:https://doi.org/10.1080/10495398.2021.1960360.; ; EDN: https://elibrary.ru/ESSBLW
21. Lozada-Soto E. A., Tiezzi F., Jiang J., Cole J. B., VanRaden P. M., Maltecca C. Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle // Journal of Dairy Science. 2022. Vol. 105, No. 11. Pp. 8956–8971. DOI:https://doi.org/10.3168/jds.2022-22116.; ; EDN: https://elibrary.ru/YAENGD
22. Visser C., Lashmar S. F., Reding J., Berry D. P., Van Marle-Köster E. Pedigree and genome-based patterns of homozygosity in the South African Ayrshire, Holstein, and Jersey breeds // Frontiers in Genetics. 2023. No. 14. Article number 1136078. DOI:https://doi.org/10.3389/fgene.2023.1136078.; ; EDN: https://elibrary.ru/OCMNQY
23. Makanjuola B. O., Miglior F., Abdalla E. A., Maltecca C., Schenkel F. S., Baes C. F. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations // Journal of Dairy Science. 2020. Vol. 103, No. 6. Pp. 5183–5199. DOI:https://doi.org/10.3168/jds.2019-18013.
24. Cortes-Hernández J. G., Ruiz-López F. J., Vásquez-Peláez C. G., García-Ruiz A. Runs of homocigosity and its association with productive traits in Mexican Holstein cattle // PLoS One. 2022. Vol. 17, No. 9. Article number 0274743. DOI:https://doi.org/10.1371/journal.pone.0274743.; ; EDN: https://elibrary.ru/PNJOHY
25. Liu D., Chen Z., Zhao W., Guo L., Sun H., Zhu K., Liu G., Shen X., Zhao X., Wang Q., Ma P., Pan Y. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits // BMC Genomics. 2021. Vol. 22, No. 1. Article number 747. DOI:https://doi.org/10.1186/s12864-021-08042-x.; ; EDN: https://elibrary.ru/QRZFYS
26. Sermyagin A. A., Bykova O. A., Loretc O. G., Kostyunina O. V., Zinov'eva N. A. Ocenka genomnoy variabel'nosti produktivnyh priznakov u zhivotnyh golshtinizirovannoy cherno-pestroy porody na osnove GWAS analiza i ROH patternov // Sel'skohozyaystvennaya biologiya. 2020. T. 55, № 2. S. 257–274. DOI:https://doi.org/10.15389/agrobiology.2020.2.257rus; ; EDN: https://elibrary.ru/DTVHLI
27. Smaragdov M. G., Kudinov A. A. Polnogenomnaya ocenka inbridinga u molochnogo skota // Dostizheniya nauki i tehniki APK. 2019. № 6. S. 51–53. DOI:https://doi.org/10.24411/0235-2451-2019-10612.; ; EDN: https://elibrary.ru/UQDHGE
28. Nedashkovskiy I. S., Sermyagin A. A., Kostyunina O. V., Volkova V. V., Gladyr' E. A., Yanchukov I. N. Populyacionno-geneticheskaya harakteristika, ocenka genomnogo inbridinga i gomozigotnosti krupnogo rogatogo skota cherno-pestroy i golshtinskoy porod po STR i SNP markeram v Rossii // Vestnik Permskogo universiteta. Seriya: Biologiya. 2021. № 4. S. 295–306. DOI:https://doi.org/10.17072/1994-9952-2021-4-295-306.; ; EDN: https://elibrary.ru/NNPJCG
29. Nedashkovskiy I. S., Sermyagin A. A., Kostyunina O. V., Yanchukov I. N., Zinov'eva N. A. Vliyanie urovnya genomnogo inbridinga, ocenennogo po ROH-patternam, na vosproizvoditel'nye kachestva i molochnuyu produktivnost' docherey, a takzhe spermoprodukciyu golshtinskih bykov-proizvoditeleĭ // Dostizheniya nauki i tehniki APK. 2021. T. 35, № 3. S. 39–45. DOI:https://doi.org/10.24411/0235-2451-2021-10307.; ; EDN: https://elibrary.ru/SGLPMR
30. Croquet C., Mayeres P., Gillon A., Vanderick S., Gengler N. Inbreeding depression for global and partial economic indexes, production, type, and functional traits // Journal of Dairy Science. 2006. Vol. 89, No. 6. Pp. 2257–2267. DOI:https://doi.org/10.3168/jds.S0022-0302(06)72297-4.
31. Doekes H. P., Bijma P., Veerkamp R. F., de Jong G., Wientjes Y. C. J., Windig J. J. Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle // Genetics Selection Evolution. 2020. Vol. 52, No. 1. Article number 64. DOI:https://doi.org/10.1186/s12711-020-00583-1.; ; EDN: https://elibrary.ru/RRKPHJ
32. Rokouei M., Vaez Torshizi R., Moradi Shahrbabak M., Sargolzaei M., Sørensen A. C. Monitoring inbreeding trends and inbreeding depression for economically important traits of Holstein cattle in Iran // Journal of Dairy Science. 2010. Vol. 93, No. 7. Pp. 3294–3302. DOI:https://doi.org/10.3168/jds.2009-2748.
33. Bjelland D. W., Weigel K. A., Vukasinovic N., Nkrumah J. D. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding // Journal of Dairy Science. 2013. Vol. 96, No. 7 Pp. 4697–4706. DOI:https://doi.org/10.3168/jds.2012-6435.
34. Doekes H. P., Veerkamp R. F., Bijma P., de Jong G., Hiemstra S. J., Windig J. J. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein-Friesian dairy cattle // Genetics Selection Evolution. 2019. Vol. 51, Article number 54. DOI:https://doi.org/10.1186/s12711-019-0497-z.; ; EDN: https://elibrary.ru/PFMOUW
35. Makanjuola B. O., Maltecca C., Miglior F., Schenkel F. S., Baes C. F. Effect of recent and ancient inbreeding on production and fertility traits in Canadian Holsteins // BMC Genomics. 2020. Vol. 21, No. 1. Article number 605. DOI:https://doi.org/10.1186/s12864-020-07031-w.; ; EDN: https://elibrary.ru/LSEAEL
36. Dijkinga F. J., Sotomaior V. S., Sotomaior C. S. Inbreeding and Its Effects on the Holstein Breed // Research, Society and Development. 2022. Vol. 11, No. 8. Article number e58411831288. DOI:https://doi.org/10.33448/rsd-v11i8.31288.; ; EDN: https://elibrary.ru/PCMKAI
37. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria [Elektronnyy resurs]. 2022. URL: https://www.r-project.org (data obrascheniya: 12.11.2022).
38. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J., Sham P. C. PLINK: A tool set for whole‐genome association and population‐based linkage analyses // American Journal of Human Genetics. 2007. No. 81. Pp. 559–575. DOI:https://doi.org/10.1086/519795.
39. Biscarini F., Cozzi P., Gaspa G., Marras G. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes [Elektronnyy resurs] // R package version 0.9.6. – 2019. URL: https://CRAN. Rproject.org/package=detectRUNS (data obrascheniya: 15.03.2022).
40. Meyermans R., Gorssen W., Buys N., Janssens S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species // BMC Genomics. 2020. Vol. 21. Article number 94. DOI:https://doi.org/10.1186/s12864-020-6463-x.; ; EDN: https://elibrary.ru/WHFIDR
41. Stoffel M., Esser M., Kardos M., Humble E., Nichols H. J., David P., Hoffman J. I. inbreedR: An R package for the analysis of inbreeding based on genetic markers // Methods in Ecology and Evolution. 2016. Vol. 7, No. 11. Pp. 1331–1339. DOI:https://doi.org/10.1111/2041-210X.12588.
42. Shapiro S. S., Wilk M. B. An analysis of variance test for normality // Biometrika. 1965. Vol. 52, No. 3. Pp. 591–611.
43. Van den Boogaart K. G., Tolosana-Delgado R., Bren M. Compositions: Compositional Data Analysis [Elektronnyy resurs] // R package version 2.0-6. 2023. URL: https://CRAN.R-project.org/package=compositions (data obrascheniya: 09.01.2023).