BIOLOGICAL EFFECTS OF EXPOSURE TO IONIZING AND NON-IONIZING RADIATION ON THE PREIMPLANTATION BOVINE EMBRYOS DEVELOPMENT
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. The purpose of this study was to evaluate the effects of low-dose of ionizing radiation (IR) and non-ionizing radiation on oocyte in vitro maturation (IVM) and subsequent embryonic development. Materials and methods. In an experimental study, bovine ovaries of the first group were irradiated with an electron accelerator. The ovaries of the second group were located inside of a coil and were exposed to a magnetic field. After irradiation, oocytes were obtained from the ovaries and IVM and in vitro fertilization (IVF) were performed, followed by observation of embryo development in a time-laps system. The embryos of the third group were exposed to electromagnetic radiation (EMR) from the router (2.4 GHz) throughout the entire period of embryo cultivation from fertilization to blastocyst stage. Results. The obtained results of irradiation of the ovaries did not allow us to reliably state if there is a presence of a negative effect of exposure to small doses of irradiation and electromagnetic radiation. However, in both experimental IR groups, there was a decrease in the level of formed blastocysts compared to the control group. The effect of a magnetic field on the ovaries causes a small but significant increase in the timing of the first embryo cleavage. In addition, there was a trend towards a decrease in the number of mature oocytes and formed blastocysts, indicating an increase in the level of degeneration of bovine oocytes and embryos. The direct exposure of preimplantation embryos to EMR did not influence on embryos development and did not reduce the number of blastocysts formed in vitro. Scientific novelty. We have carried out a comparative analysis of the influence of low-dose ionizing radiation from various sources, differing in dose rate, on the development of early pre-implantation bovine embryos in vitro.

Keywords:
bovine oocyte, in vitro maturation, in vitro fertilization, magnetic field, electromagnetic radiation
Text
Text (PDF): Read Download
References

1. Augustianath T., Evans D. A., Anisha G. S. Teratogenic effects of radiofrequency electromagnetic radiation on the embryonic development of chick: A study on morphology and hatchability. Research in Veterinary Science. 2023; 159: 93–100. DOI:https://doi.org/10.1016/j.rvsc.2023.04.015.

2. Barkova A. S., Makutina V. A., Modorov M. V., Isaeva A. G., Krivonogova A. S. Features of the preparation of biological material for genome editing in cattle. Agrarian Bulletin of the Urals. 2019; 12 (191): 40–44. DOI:https://doi.org/10.32417/1997-4868-2019-191-12-40-4.

3. Beraldi R., Sciamanna I., Mangiacasale R., Lorenzini R., Spadafora C. Mouse early embryos obtained by natural breeding or in vitro fertilization display a differential sensitivity to extremely low-frequency electromagnetic fields. Mutation Research – Genetic Toxicology and Environmental Mutagenesis. 2003; 538 (1-2): 63–70.

4. Bodgi L., Foray N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model. International Journal of Radiation Biology. 2016; 92 (3): 117–131.

5. Borhani N., Rajaei F., Salehi Z., Javadi A. Analysis of DNA fragmentation in mouse embryos exposed to an extremely low-frequency electromagnetic field. Electromagnetic Biology and Medicine. 2011; 30 (4): 246–252.

6. Chen Y., Hong L., Zeng Y., Shen Y., Zeng Q. Power frequency magnetic fields induced reactive oxygen species-related autophagy in mouse embryonic fibroblasts. The International Journal of Biochemistry and Cell Biology. 2014; 57: 108–114. DOI:https://doi.org/10.1016/j.biocel.2014.10.013.

7. Chen J. S., et al. Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. Journal of Reproduction and Development. 2021; 67 (6): 392–401. DOI:https://doi.org/10.1262/jrd.2021-074.

8. Dasdag S., Taş M., Zulkuf Akdag M., Yegin K. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagnetic Biology and Medicine. 2015; 34: 37–42. DOI:https://doi.org/10.3109/15368378.2013.869752.

9. Desai N. R., Kesari K. K., Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reproductive Biology and Endocrinology. 2009; 7 (114): 1–9. DOI:https://doi.org/10.1186/1477-7827-7-114.

10. Dama M. S., Bhat M. N. Mobile phones affect multiple sperm quality traits: a meta-analysis. F1000Research. 2013; 2: 40. DOI:https://doi.org/10.12688/f1000research.2-40.v1.

11. D’Silva M. H., et al. Assessment of DNA Damage in Chick Embryo Brains Exposed to 2G and 3G Cell Phone Radiation using Alkaline Comet Assay Technique. Journal of Clinical & Diagnostic Research. 2021; 15; 1. DOI:https://doi.org/10.7860/JCDR/2021/47115.14441.

12. Cameron I. L., Hardman W. E., Wendell D. W., Zimmerman S., Zimmerman A. M. Environmental magnetic fields: Influences on early embryogenesis. Journal of Cellular Biochemistry. 1993. DOI:https://doi.org/10.1002/jcb.2400510406.

13. Gamze A., Ömür G. D., Kıymet K. Y., Devra D., Süleyman K. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environmental Research. 2018; 167: 700–707. DOI:https://doi.org/10.1016/j.envres.2018.02.031.

14. Hessels A. C., Langendijk J. A., Gawryszuk A., Heersters M. A. A. M., van der Salm N. L. M., Tissing W. J. E., van der Weide H. L., Maduro J. H. Review – late toxicity of abdominal and pelvic radiotherapy for childhood cancer. Radiotherapy and Oncology. 2022; 170: 27–36. DOI:https://doi.org/10.1016/j.radonc.2022.02.029.

15. Hosseinimehr S. J. The protective effects of trace elements against side effects induced by ionizing radiation. Radiotherapy and Oncology. 2015; 33 (2): 66–74.

16. Kocaman A., Altun G., Kaplan A. A., Deniz Ö. G., Yurt K. K., Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environmental Research. 2018; 163: 71–79. DOI:https://doi.org/10.1016/j.envres.2018.01.034.

17. Koyama S., Narita E., Shinohara N., Miyakoshi J. Effect of an intermediate-frequency magnetic field of 23 kHz at 2 mT on chemotaxis and phagocytosis in neutrophil-like differentiated human HL-60 cells. International Journal of Environmental Research and Public Health. 2014; 11: 9649–9659.

18. Baatout S. (ed.). Radiobiology: textbook. Cham, Switzerland: Springer International Publishing, 2023. 667 p. DOI:https://doi.org/10.1007/978-3-031-18810-7.

19. Kumari K., Capstick M., Cassara A.M., Herrala M., Koivisto H., Naarala J., Tanila H., Viluksela M., Juutilainen J. Effects of intermediate frequency magnetic fields on male fertility indicators in mice. Environmental Research. 2017; 157: 64–70. DOI:https://doi.org/10.1016/j.envres.2017.05.014.

20. Levine J. M., Whitton J. A., Ginsberg J. P., Green D. M., Leisenring W. M., Stovall M., Robison L. L., Armstrong G. T., Sklar C. A. Nonsurgical premature menopause and reproductive implications in survivors of childhood cancer: a report from the childhood cancer survivor study. Cancer. 2018; 124 (5): 1044–1052.17. DOI:https://doi.org/10.1002/cncr.31121.

21. Makutina V. A., Krivonogova A. S., Isaeva A. G., Moiseeva K. V., Petropavlovsky M. V. Morphokinetic development parameters of cattle pre-implantation embryos in vitro. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies (ITJEMAST). 2022; 13 (6): 1–9. DOI:https://doi.org/10.14456/ITJEMAST.2022.111.

22. Mavragani I. V., Nikitaki Z., Kalospyros S. A., Georgakilas A. G. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancers. 2019; 11 (11): 1789. DOI:https://doi.org/10.3390/cancers11111789.

23. Mladenova V., Mladenov E., Stuschke M., Iliakis G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules. 2022; 27 (5): 1540. DOI:https://doi.org/10.3390/molecules27051540.

24. Meador J. A., Morris R. J., Balajee A. S. Ionizing Radiation-Induced DNA Damage Response in Primary Melanocytes and Keratinocytes of Human Skin. Cytogenetic and Genome Research. 2022; 162 (4): 188–200. DOI:https://doi.org/10.1159/000527037.

25. Nishimura I., Oshima A., Shibuya K., Negishi T. Lack of teratological effects in rats exposed to 20 or 60 kHz magnetic fields. Birth Defects Research Part B – Developmental and Reproductive Toxicology Overview. 2011; 92: 469–477.

26. Nishimura I., Oshima A., Shibuya K., Mitani T., Negishi T. Acute and subchronic toxicity of 20 kHz and 60 kHz magnetic fields in rats. Journal of Applied Toxicology. 2016; 36: 199–210.

27. Omar Azzouz S., et al. Morphological changes in chick embryos development exposed to electromagnetic radiation emitted by smart mobile phones. Advanced Materials Letters. 2020; 11. 5: 1–8. DOI:https://doi.org/10.5185/amlett.2020.051510.

28. Önal A. G., Güzey Y. Z. Effects of exposure to 2G/3G cell phone radiation on in vitro fertilization, subsequent development and sex distribution of bovine embryos. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi. 2023; 28. 2: 427–437. DOI:https://doi.org/10.37908/mkutbd.1205044.

29. Park J. I., Jung S. Y., Song K. H., Lee D. H., Ahn J., Hwang S. G., Jung I. S., Lim D. S., Song J. Y. Predictive DNA damage signaling for low dose ionizing radiation. International Journal of Molecular Medicine. 2024; 53 (6): 56. DOI:https://doi.org/10.3892/ijmm.2024.5380.

30. Roshangar L., Hamdi B. A., Khaki A. A., Soleimani R. J., Soleimani Rad S. Effect of low-frequency electromagnetic field exposure on oocyte differentiation and follicular development. Advanced Biomedical Research. 2014; 3: 76. DOI:https://doi.org/10.4103/2277-9175.125874.

31. Roshangar L., soleimani Rad J. Electron microscopic study of folliculogenesis after electromagnetic field exposure. Journal of Reproduction and Infertility. 2004; 5 (4): 299–307.

32. Santis M. D., Gianantonio E. D., Straface G., Cavaliere A. F., Caruso A., Schiavon F., Berletti R., Clementi M. Ionizing radiations in pregnancy and teratogenesis: A review of literature. Reproductive Toxicology. 2005; 20 (3): 323–329.

33. Sharma A. K., et al. Exposure to pulsed electromagnetic fields improves the developmental competence and quality of somatic cell nuclear transfer buffalo (Bubalus bubalis) embryos produced using fibroblast cells and alters their epigenetic status and gene expression. Cellular Reprogramming. 2021; 23. 5: 304–315. DOI:https://doi.org/10.1089/cell.2021.0028.

34. Siddiqi N. A., et al. Mobile Phone Electromagnetic Fields Affected the Hepatocytes in the White Leghorn Chicken Embryo: An Ultra-Structural Study. Biomedical and Pharmacology Journal. 2020; 13 (1): 245–252. DOI:https://doi.org/10.13005/bpj/1882.

35. Vazirov R., Sokovnin S., Musihina N., Moiseeva K. Surface irradiation of hatching eggs with nanosecond electron beam before incubation for stimulation. In International Scientific and Practical Conference “Digital agriculture-development strategy” ISPC. 2019. Pp. 482–485. DOI:https://doi.org/10.2991/ispc-19.2019.108.

Login or Create
* Forgot password?