Екатеринбург, Свердловская область, Россия
сотрудник
Уральский федеральный университет
Россия
Abstract. The purpose of the research is to isolate species of annual and perennial herbaceous plants that are promising for the tasks of accelerating the sequestration of atmospheric carbon, resistant to local soil and climatic conditions and having high productivity from the collection fund of the botanical garden of the Ural Federal University. Methods. The article presents data on the productivity of four types of herbaceous plants: Amaranthus caudatus L., Amaranthus cruentus L., Polygonum weyrichii F. Schmidt и Echinops sphaerocephalus L., grown in the botanical garden. All the research objects were grown under the same conditions. Productivity was measured at the beginning of September. The data were processed using standard statistical methods. Results. It was revealed that the plants P. weyrichii is the most productive in terms of both fresh and dry yield. The yield of the P. weyrichii increases in years with sufficiently high moisture content. Aridity and high summer temperatures have a negative impact on the growth of the P. weyrichii. Amaranths gain a large aboveground mass due to their belonging to the group with the C4 type of photosynthesis. High summer temperatures have a positive effect on the growth and development of amaranths, while correlations with the amount of precipitation are statistically insignificant. The plants E. sphaerocephalus showed average values for productivity and requires further study. It is recommended to grow the plants P. weyrichii in a sufficiently humid area. Amaranth, being a drought-resistant plant, is highly productive in any years, especially in years with the value of the hydrothermal coefficient (HTC) less than 1.0. The scientific novelty lies in the fact that the features of the cultivation of the studied crops are considered not only for forage purposes but also from the point of view of atmospheric carbon deposition and cultivation on potential carbon farms in the changing climate of the region.
amaranth, Polygonum weyrichii, Echinops sphaerocephalus, large-herb plants, productivity, carbon farms
1. Fedoseeva G. P., Okoneshnikova T. F., Yuzhakov V. I., Halatyan O. V., Radchenko T. A., Bagautdinova R. I., Rymar’ V. P., Stefanovich G. S., Skulkin I. М. Model’ ispol’zovaniya resursov mirovoy flory dlya formirovaniya nauchno-obrazovatel’nogo prostranstva Ural’skogo regiona [Model of use of resources world flora for formation of scientific-educational space of the Ural region] [e-resource] // Hortus botanicus. 2007. Vol. 4. 23 p. URL: https://hb.karelia.ru/journal/content_list.php?id=2804 (date of reference: 30.09.2021). (In Russian.)
2. WFO (2021): World Flora Online [e-resource]. URL: http://www.worldfloraonline.org (date of reference: 30.09.2021).
3. Khusnidinov Sh. K., Shumitsky S. N. Morfo-biologicheskaya kharakteristika gortsa Veyrikha [Morpho-biological characteristic of Weyrich’s knotweed] // Vestnik IrGSHA. 1998. No. 12. Pp. 37-39. (In Russian.)
4. Efremov V. V. Produktivnost’ gortsa Veyrikha v polevom kormoproizvodstve [Productivity of the Weyrich’s knotweed in field forage production] // Aktual’nyye voprosy sovershenstvovaniya tekhnologii proizvodstva i pererabotki produktsii sel’skogo khozyaystva. 2018. No. 20. Pp. 30-32. (In Russian).
5. Chupina M. P., Stepanov A. F. Assessment of photosynthetic productivity of new perennial forage crops in forest-steppe conditions of Western Siberia // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 624. DOI:https://doi.org/10.1088/1755-1315/624/1/012121.
6. Zykova E. Y., Shaulo D. N. Nakhodki vo flore Novosibirskoy oblasti [New and rare species in the flora of the Novosibirsk Region] // TURCZANINOWIA. 2021. No. 24 (2). Pp. 19-27. DOI:https://doi.org/10.14258/turczaninowia.23.3.6. (In Russian).
7. Savin A. P., Ryzhenkova A. V. Mordovnik sharogolovyy [Glandular globe-thistle] // Pchelovodstvo. 2013. No. 9. Pp. 18-19. (In Russian.)
8. Skvortsov A. I., Semenov V. G., Sattarov V. N., Baimukanov D. A., Doshanov D. A., Abdullayeva G. A., Faizullayeva L. A. Some results of phenological observations over the main nectariferous-polliniferous plants of the Chuvash Republic // Bulletin the National academy of sciences of the Republic of Kazakhstan. 2020. No. 1 (383). Pp. 121-127. DOI:https://doi.org/10.32014/2020.2518-1467.15.
9. Dokukin Yu. V. Biologicheskiye osobennosti razvitiya mordovnika sharogolovogo [Biological development features of Echinops sphaerocephalus] // Sbornik nauchno-issledovatel’skikh rabot po pchelovodstvu i apiterapii. Rybnoe, 2018. Pp. 115-118. (In Russian.)
10. Chernov I. A., Zemlyanoy B. Ya. Amarant - fabrika belka [Amaranth - protein factory]. Kazan, 1991. 92 p. (In Russian.)
11. Dmitrieva O., Ivanov S. Comparative study of amaranth species (Amaranthus ssp.) in the temperate continental climate of Russian Federation // Acta agriculturae Slovenica, 2020. No. 115/1. Pp. 15-24. DOI:https://doi.org/10.14720/aas.2020.115.1.1281.
12. Chernov I. A. Amarant - fiziologo-biokhimicheskie osnovy introduktsii [Amaranth - physiological and biochemical foundations of introduction]. Kazan, 1992. 92 p. (In Russian.)
13. Li T., Zhang F., Jiao Y., Zhang M., Chang Y., Matomela N. Study on carbon sequestration capacity of typical crops in Northern China // Journal of Plant Biology. 2019. No. 62 (3). Pp. 195-202. DOI:https://doi.org/10.1016/j.scitotenv.2014.07.047.
14. Valdayskikh V. V., Voronin P. Yu., Artemyeva E. P., Rymar V. P. Amaranth responses to experimental soil drought // AIP Conference Proceedings. 2019. No. 2063. Article number 030023. DOI:https://doi.org/10.1063/1.5087331.
15. Artemyeva E. P., Valdayskikh V. V., Radchenko T. A., Belyaeva P. A. Amaranthus phenology during its introduction in the Middle Urals // AIP Conference Proceedings. 2019. No. 2063. Article number 030002. DOI:https://doi.org/10.1063/1.5087310.
16. Assad R., Reshi Z. A., Jan S., Rashid I. Biology of Amaranths // Botanical Review. 2017. No. 83 (4). Pp. 382-436. DOI:https://doi.org/10.1007/s12229-017-9194-1.
17. Kurhak V. H., Tkachenko M. A., Asanishvili N. M., Moisiienko V. V., Holodna A. V., Tkachenko A. M., Slyusar S. M., Ptashnik M. M., Kolomiiets L. P., Tsymbal Ya. S., Oksymets O. L., Kulyk R. M., Panchyshyn V. Z., Stotska S. V., Sladkovska T. A. Energy productivity of uncommon herbs for solid fuel manufacturing // Ukrainian Journal of Ecology. 2021. No. 11 (1). Pp. 299-305.
18. Wang C., Tang Y., Li X., Zhang W., Zhao C., Li C. Negative impacts of plant diversity loss on carbon sequestration exacerbate over time in grasslands // Environmental Research Letters. 2020. No. 15 (10). Article number 104055. DOI:https://doi.org/10.1088/1748-9326/abaf88.
19. Wang Y., Chang Q., Li X. Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing // Urban Forestry & Urban Greening. 2021. No. 64. Article number 127291. DOI:https://doi.org/10.1016/j.ufug.2021.127291.
20. Korres N. E., Norsworthy J. K., Tehranchian P., Gitsopoulos T. K., Loka D. A., Oosterhuis D. M., Gealy D. R., Moss S. R., Burgos N. R., Miller M. R., Palhano M. Cultivars to face climate change effects on crops and weeds: a review // Agronomy for Sustainable Development. 2016. No. 36 (1). Article number 12. DOI:https://doi.org/10.1007/s13593-016-0350-5.