Abstract. Purpose of research is to identify the patterns of development of shoots on annual saplings of S. triandra grown from cuttings taken from different parts of uterine shoots. Research methodology and methods. The object of the study is a model inbred-clonal population of S. triandra. Experimental group: replicas of eight clones. Variants for each clone: annual saplings grown from basal and apical cuttings. All variants were carried out in three replications. Material: growing annual shoots. The research was doing out in the soil-climatic conditions of the Bryansk district of the zone of broad-leaved forests. Observations were conducted against the background of excessive atmospheric moistening during the rooting of cuttings. Methods: chronobiological, numerical analysis of time series. Results. The seasonal growth of shoots on basal cuttings was 148–219 cm, on apical – 95–171 cm. The maximum daily increment of shoots on basal cuttings is 2.59 ± 0.148 cm/day, on apical – 1.86 ± 0.085 cm/day. The highest values of the daily increment of shoots on basal cuttings were revealed in middle of June, on apical cuttings – in middle of July. The duration of multi-day cycles of daily increment was 16–26 days, regardless of the clone factor and the origin of cuttings. The maximum number of multi-day cycles does not exceed 5. On the shoots of clones with the highest daily increment, the number of multi-day cycles decreases to 3–4. Scientific novelty. Under the conditions of this experiment, the cyclical development of all the studied shoots of S. triandra was established. Multi-day cycles of daily increment are highly synchronized in the first half of the vegetative period, regardless of the clone factor and the origin of cuttings. The range of fluctuations in the daily increment of shoots on basal cuttings is determined primarily by the clone factor. The same range of oscillations on apical cuttings is largely determined by intraclonal variability. To create plantings of S. triandra, it is recommended to use, first of all, cuttings from the basal parts of shoots. If there is a shortage of planting material, it is permissible to use the tops of shoots, taking into account the factor of mother clones.
almond willow, Salix triandra, soil-climatic conditions, weather-climatic conditions, stem cuttings, one-year age saplings, annual shoots, daily increment, seasonal dynamics, cyclicality of increment
1. Pravdin L. F. Iva, ee kul'tura i ispol'zovanie. Moskva: Izd-vo AN SSSR, 1952. 168 s.
2. Skvortsov A. K. Willows of Russia and adjacent countries. Taxonomical and geographical revision. Joensuu: University of Joensuu, 1999. 307 p.
3. Kuzovkina Y. A. Compilation of the checklist for cultivars of Salix L. (Willow) // HortScience. 2015. No. 50 (11). Pp. 1608-1609. DOI:https://doi.org/10.21273/HORTSCI.50.11.1608.
4. McElroy G. H., Dawson W. M. Biomass from short rotation coppice willow on marginal land // Biomass. 1986. No. 10. Pp. 225-240. DOI:https://doi.org/10.1016/0144-4565(86)90055-7.
5. Matyka M., Radzikowski P. Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil [e-resource] // Agriculture. 2020. No. 10 (12). Article number 616. URL: https://www.mdpi.com/2077-0472/10/12/616 (date of reference: 10.06.2022). DOI:https://doi.org/10.3390/agriculture10120616.
6. Fege A. S., Inman R. E., Salo D. J. Energy Farms for the Future // Journal of Forestry. 1979. No. 77 (6). Pp. 358-361.
7. Reid W. V., Ali M. K., Field C. B. The future of bioenergy // Global Change Biology. 2020. No. 26 (1). Pp. 274-286. DOI:https://doi.org/10.1111/gcb.14883.
8. Vanbeveren S. P. P., Ceulemans R. Biodiversity in short-rotation coppice // Renewable and Sustainable Energy Reviews. 2019. No. 111. Pp. 34-43. DOI:https://doi.org/10.1016/j.rser.2019.05.012.
9. Leirpoll M. E., Næss J. S., Cavalett O., Dorber M., Hu X., Cherubini F. Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland // Renewable Energy. 2021. No. 168. Pp. 45-56. DOI:https://doi.org/10.1016/j.renene.2020.11.159.
10. Rahman S. A., Baral H., Sharma R., Samsudin Y. B., Meyer M., Lo M., Artati Y., Simamora T. I., Andini S., Leksono B., Roshetko J. M., Lee S. M. Sunderland T. Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes [e-resource] // Food and Energy Security. 2019. No. 8 (3). Article number e00165. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/fes3.165 (date of reference: 10.06.2022). DOI:https://doi.org/10.1002/fes3.165.
11. Isabel N., Holliday J. A., Aitken S. N. Forest genomics: Advancing climate adaptation, forest health, productivity, and conservation // Evolutionary Applications. 2020. No. 13 (1). Pp. 3-10. DOI:https://doi.org/10.1111/eva.12902.
12. Nemethy S., Szemethy L. Adverse and Beneficial Effects of Woody Biomass Feedstock Plantations on Biodiversity and Wildlife Habitats // Acta Regionalia et Environmentalica. 2020. No. 16 (2). Pp. 25-33. DOI: https://doi.org/10.2478/aree-2019-0006.
13. Weih M., Nordh N.-E., Manzoni S., Hoeber S. Functional traits of individual varieties as determinants of growth and nitrogen use patterns in mixed stands of willow (Salix spp.) [e-resource] // Forest Ecology and Management. 2021. No. 479. Article number 118605. URL: https://www.sciencedirect.com/science/article/pii/S0378112720313748 (date of reference: 10.06.2022). DOI:https://doi.org/10.1016/j.foreco.2020.118605.
14. Fabio E. S., Smart L. B. Differential growth response to fertilization of ten elite shrub willow (Salix spp.) bioenergy cultivars // Trees. 2018. No. 32. Pp. 1061-1072. DOI:https://doi.org/10.1007/s00468-018-1695-y.
15. Pietrzykowski M., Woś B., Tylek P., Kwaśniewski D., Juliszewski T., Walczyk J., Likus-Cieślik J., Ochał W., Tabor S. Carbon sink potential and allocation in above- and below-ground biomass in willow coppice // Journal of Forestry Research. 2021. No. 32. Pp. 349-354. DOI:https://doi.org/10.1007/s11676-019-01089-3.
16. Doklad ob osobennostyah klimata na territorii Rossiyskoy Federacii za 2020 god [Elektronnyy resurs]. Moskva, 2021. 104 s. URL: http://www.meteorf.ru/upload/pdf_download/doklad_klimat2020.pdf (data obrascheniya: 23.08.2021).
17. Fabio E. S., Leary C. J., Smart L. B. Tolerance of novel inter-specific shrub willow hybrids to water stress // Trees. 2019. No. 33 (4). Pp. 1015-1026. DOI:https://doi.org/10.1007/s00468-019-01835-4.
18. Rodríguez M. E., Doffo G. N., Cerrillo T., Luquez V. M. C. Acclimation of cuttings from different willow genotypes to flooding depth level // New Forests. 2018. No. 49. Pp. 415-427. DOI:https://doi.org/10.1007/s11056-018-9627-7.
19. Berlin S., Hallingbäck H.R., Beyer F., Nordh N.-E., Weih M., Rönnberg-Wästljung A.-C. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years // Annals of Botany. 2017. No. 78 (1). Pp. 87-100. DOI:https://doi.org/10.1093/aob/mcx029.
20. Epanchinceva O. V. Osobennosti iskusstvennogo vegetativnogo razmnozheniya arkto-montannyh iv // Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki. 2011. № 15-1 (104). S. 182-187.
21. Yoon A., Oh H. E., Kim S. Y., Park Y. G. Plant growth regulators and rooting substrates affect growth and development of Salix koriyanagi cuttings [e-resource] // Rhizosphere. 2021. No. 20. Article number 100437. URL: https://www.sciencedirect.com/science/article/pii/S2452219821001336 (date of reference: 10.06.2022). DOI:https://doi.org/10.1016/j.rhisph.2021.100437.
22. Weissteiner C., Schenkenbach N., Lammeranner W., Kalny G., Rauch H. P. Cutting diameter on early growth performance of purple willow (Salix purpurea L.) // Journal of Soil and Water Conservation. 2019. No. 74 (4). Pp. 380-388. DOI:https://doi.org/10.2489/jswc.74.4.380.
23. Epanchinceva O. V., Tishkina E. A., Montile A. A. Osobennosti rosta i razvitiya v pervye gody vyraschivaniya razlichnyh taksonov roda Salix L. na urbanizirovannoy territorii Ekaterinburga // Vestnik Buryatskoy gosudarstvennoy sel'skohozyaystvennoy akademii im. V. R. Filippova. 2021. № 3 (64). S. 83-91. DOI:https://doi.org/10.34655/bgsha.2021.64.3.011.
24. Edelfeldt S., Lundkvist A., Forkman J., Verwijst T. Effects of cutting traits and competition on performance and size hierarchy development over two cutting cycles in willow // Biomass and Bioenergy. 2018. No. 108. Pp. 66-73. DOI:https://doi.org/10.1016/j.biombioe.2017.11.002.
25. Edelfeldt S., Lundkvist A., Forkman J., Verwijst T. Effects of cutting length, orientation and planting depth on early willow shoot establishment // BioEnergy Research. 2015. No. 8. Pp. 796-806. DOI:https://doi.org/10.1007/s12155-014-9560-3.
26. Verwijst T., Lundkvist A., Edelfeldt S., Forkman J., Nordh N.-E. Effects of clone and cutting traits on shoot emergence and early growth of willow // Biomass and Bioenergy. 2012. No. 37. Pp. 257-264. DOI:https://doi.org/10.1016/j.biombioe.2011.12.004.
27. Afonin A. A. Sezonnaya dinamika dliny mezhdouzliy Salix triandra L. (Salicaceae) na fone kratkovremennoy atmosfernoy zasuhi // Izvestiya vysshih uchebnyh zavedeniy. Severo-Kavkazskiy region. Seriya: Estestvennye nauki. 2021. № 1 (209). S.104-112. DOI:https://doi.org/10.18522/1026-2237-2021-1-104-112.
28. Afonin A. A. Epigeneticheskaya izmenchivost' struktury sezonnoy dinamiki razvitiya pobegov ivy trehtychinkovoy (Salix triandra, Salicaceae) [Elektronnyy resurs] // Vestnik Orenburgskogo gosudarstvennogo pedagogicheskogo universiteta. Elektronnyy nauchnyy zhurnal. 2021. № 2 (38). S. 1-14. URL: http://vestospu.ru/archive/2021/articles/1_38_2021.pdf (data obrascheniya: 10.06.2022). DOI:https://doi.org/10.32516/2303-9922.2021.38.1.
29. Pogoda i klimat. Klimaticheskiy monitor. Bryansk [Elektronnyy resurs]. URL: http://www.pogodaiklimat.ru/monitor.php?id=26898 (data obrascheniya: 02.09.2021).
30. Donnelly I., McDonnell K., Finnan J. Novel Approaches to Optimise Early Growth in Willow Crops // Agriculture. 2019. No. 9. Pp. 116. DOI:https://doi.org/10.3390/agriculture9060116.
31. Welc M., Lundkvist A., Verwijst T. Effects of propagule phenology (non-dormant versus dormant) and planting system (vertical versus horizontal) on growth performance of willow clones grown under different weeding regimes // BioEnergy Research. 2018. No. 11 (3). Pp. 703-714. DOI:https://doi.org/10.1007/s12155-018-9929-9.