Russian Federation
Russian Federation
Abstract. The purpose of the study is aimed at collecting and analyzing literature data on the use of probiotics and phytobiotics in the fish fattening system to obtain environmentally safe products on the example of fattening common carp (Cyprinus carpio). Materials and methods of research. The search and analysis of literature was carried out using Internet resources: RSCI – https://www.elibrary.ru, ScienceDirect – https://www.sciencedirect.com, https://pubmed.ncbi.nlm.nih.gov. Results. In this review, using meta-analytical data, the main results on the use of probiotics and phytobiotics in the fish fattening system for obtaining environmentally safe products with high nutritional values of finished products are summarized. The current trends of high demand for food products are mainly focused on the search for innovative solutions for the identification of production processes. From the standpoint of nutritional value, fish proteins are absorbed better than animal proteins. Fish contains significant indicators of calcium content, which, combined with high levels of vitamin D and low cholesterol, makes it extremely useful for the human body. As the main model for collecting meta-analytical data, we used the results of international experience in the use of various phytobiotics in the fattening of common carp (Cyprinus carpio). A systematic analysis of the data allows us to judge the high potential of feed additives of various origin and pharmacochemical composition as growth activators, antioxidant and humoral protection of the body, as well as an increase in the nutritional value of finished products by increasing the content of crude protein in the final product. The presented data indicate a high potential for the use of agro-food waste for the sustainable development of industrial fish farming. It should be noted that the conducted bibliometric study of the review of recent publications indicates a high level of interest in the world to solve the problem and the interest of the world scientific community. Scientific novelty lies in the systematic analysis of empirical literature data on the development and use of probiotic and phytobiotic feed additives to increase productivity, nutritional value and resistance to infectious diseases of various representatives of aquaculture.
antibiotics, probiotics, phytobiotics, feed conversion rate, aquaculture, Cyprinus carpio
1. Banerjee G., Ray A. K. The advancement of probiotics research and its application in fish farming industries // Research in veterinary science. 2017. Vol. 115. Pp. 66-77. DOI:https://doi.org/10.1016/j.rvsc.2017.01.016.
2. Mugwanya M., Dawood M. A. O., Kimera F. et al. Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: a Review // Probiotics and antimicrobial proteins. 2022. Vol. 14 (1). Pp. 130-157. DOI:https://doi.org/10.1007/s12602-021-09852-x.
3. Mbarga M. J. A., Anyutoulou K. L. D., Smolyakova L. A. et al. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics // Veterinary world. 2021. Vol. 14 (2). Pp. 319-328. DOI:https://doi.org/10.14202/vetworld.2021.319-328.
4. Sauter S. N., Blum J. W. Probiotics in veterinary medicine: a review // Schweizer Archiv für Tierheilkunde. 2003. Vol. 145 (11). DOI:https://doi.org/10.1024/0036-7281.145.11.507.
5. Al-Khalaifa H., Al-Nasser A., Al-Surayee T. et al. Effect of dietary probiotics and prebiotics on the performance of broiler chickens // Poultry Science. 2019. Vol. 98 (10). Pp. 4465-4479. DOI:https://doi.org/10.3382/ps/pez282.
6. Dawood M. A. O., Abo-Al-Ela H. G., Hasan M. T. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios // Fish & shellfish immunology. 2020. Vol. 97. Pp. 268-282. DOI:https://doi.org/10.1016/j.fsi.2019.12.054.
7. Rohani M. F., Islam S. M., Hossain M. K. et al. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish // Fish & shellfish immunology. 2022. Vol. 120. Pp. 569-589. DOI:https://doi.org/10.1016/j.fsi.2021.12.037.
8. El-Saadony M. T., Alagawany M., Patra A. K. et al. The functionality of probiotics in aquaculture: An overview // // Fish & shellfish immunology. 2021. Vol. 117. Pp. 36-52. DOI:https://doi.org/10.1016/j.fsi.2021.07.007.
9. Noor Z., Noor M., Khan I. et al. Evaluating the lucrative role of probiotics in the aquaculture using microscopic and biochemical techniques // Microscopy research and technique. 2020. Vol. 83 (3). Pp. 310-317. DOI:https://doi.org/10.1002/jemt.23416.
10. Chen X.; Yi H.; Liu S. et al. Probiotics Improve Eating Disorders in Mandarin Fish (Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota // Microorganisms. 2021. Vol. 9 (6). Article number 1288. DOI:https://doi.org/10.3390/microorganisms9061288.
11. Kong Y., Gao C., Du X. et al. Effects of single or conjoint administration of lactic acid bacteria as potential probiotics on growth, immune response and disease resistance of snakehead fish (Channa argus) // Fish & shellfish immunology. 2020. Vol. 102. Pp. 412-421. DOI:https://doi.org/10.1016/j.fsi.2020.05.003.
12. Hai N. V. The use of probiotics in aquaculture // Journal of Applied Microbiology. 2015. Vol. 119 (4). Pp. 917-935. DOI:https://doi.org/10.1111/jam.12886.
13. Rashmeei M., Hosseini Shekarabi S. P., Shamsaie Mehrgan M. et al. Stimulatory effect of dietary chasteberry (Vitex agnus-castus) extract on immunity, some immune-related gene expression, and resistance against Aeromonas hydrophila infection in goldfish (Carassius auratus) // Fish & shellfish immunology. 2020. Vol. 107 (Pt A). Pp. 129-136. DOI:https://doi.org/10.1016/j.fsi.2020.09.037.
14. Reverter M., Bontemps N., Lecchini D. et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives // Aquaculture. 2014. Vol. 433. Pp. 50-61. DOI:https://doi.org/10.1016/j.aquaculture.2014.05.048.
15. Awad E., Awaad A. Role of medicinal plants on growth performance and immune status in fish // Fish & shellfish immunology. 2017. Vol. 67. Pp. 40-54. DOI:https://doi.org/10.1016/j.fsi.2017.05.034.
16. Hoseinifar S. H., Shakouri M., Van Doan H. et al. Dietary supplementation of lemon verbena (Aloysia citrodora) improved immunity, immune-related genes expression and antioxidant enzymes in rainbow trout (Oncorrhyncus mykiss) // Fish & shellfish immunology. 2020. Vol. 99. Pp. 379-385. DOI:https://doi.org/10.1016/j.fsi.2020.02.006.
17. Yousefi M., Farsani M. N., Ghafarifarsani H. et al. The effects of dietary supplementation of mistletoe (Viscum album) extract on the growth performance, antioxidant, and innate, immune responses of rainbow trout (Oncorhynchus mykiss) // Aquaculture. 2021. Vol. 536. Article number 736385. DOI:https://doi.org/10.1016/j.aquaculture.2021.736385.
18. Jing X., Su S., Zhang C. et al. Dynamic changes in microbial community structure in farming pond water and their effect on the intestinal microbial community profile in juvenile common carp (Cyprinus carpio L.) // Genomics. 2021. Vol. 113 (4). Pp. 2547-2560. DOI:https://doi.org/10.1016/j.ygeno.2021.05.024.
19. Dong Z., Nguyen N. H., Zhu W. Genetic evaluation of a selective breeding program for common carp Cyprinus carpio conducted from 2004 to 2014 // BioMed Central Genetics. 2015. Vol. 16. Article number 94. DOI:https://doi.org/10.1186/s12863-015-0256-2.
20. Kumar V., Makkar H. P., Becker K. Evaluations of the nutritional value of Jatropha curcas protein isolate in common carp (Cyprinus carpio L.) // Journal of animal physiology and animal nutrition. 2012. Vol. 96 (6). Pp. 1030-1043. DOI:https://doi.org/10.1111/j.1439-0396.2011.01217.x.
21. Sobczak M., Panicz R., Eljasik P. et al. Nutritional value and sensory properties of common carp (Cyprinus carpio L.) fillets enriched with sustainable and natural feed ingredients // Food and chemical toxicology. 2021. Vol. 152. Article number 112197. DOI:https://doi.org/10.1016/j.fct.2021.112197.
22. Ugbogu O. C., Emmanuel O., Agi G. O. et al. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.) // Heliyon. 2021. Vol. 7 (11). Article number e08404. DOI:https://doi.org/10.1016/j.heliyon.2021.e08404.
23. Abdel-Tawwab M., Adeshina I., Jenyo-Oni A. et al. Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection // Fish & shellfish immunology. 2018. Vol. 78. Pp. 346-354. DOI:https://doi.org/10.1016/j.fsi.2018.04.057.
24. Stolle A.; Sedlmeier H.; Nassar A. et al. The nutritive value of carp (Cyprinus carpio) // Tierärztliche Praxis. 1994. Vol. 22 (6). P. 512-4.
25. Ghafarifarsani H., Hoseinifar S. H., Adorian T. J. et al. The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium boiss for common carp (Cyprinus carpio) diet: Growth performance, antioxidant defense, and immunological parameters // Fish & Shellfish Immunology. 2021. Vol. 119. Pp. 670-677. DOI:https://doi.org/10.1016/j.fsi.2021.10.014.
26. Ahmadifar E., Mohammadzadeh S., Kalhor N. et al. Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio) // Aquaculture. 2022. Vol. 558. Article number 738372. DOI:https://doi.org/10.1016/j.aquaculture.2022.738372.
27. Mahboub H. H.; Faggio C.; Hendam B.M. et al. Immune-antioxidant trait, Aeromonas veronii resistance, growth, intestinal architecture, and splenic cytokines expression of Cyprinus carpio fed Prunus armeniaca kernel-enriched diets // Fish & Shellfish Immunology. 2022. Vol. 124. Pp. 182-191. DOI:https://doi.org/10.1016/j.fsi.2022.03.048.
28. Mahboub H. H., Rashidian G., Hoseinifar S. H. et al. Protective effects of Allium hirtifolium extract against foodborne toxicity of Zinc oxide nanoparticles in Common carp (Cyprinus carpio) // Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2022. Vol. 257. Article number 109345. DOI:https://doi.org/10.1016/j.cbpc.2022.109345.
29. Hoseini S. M., Gupta S. K., Yousefi M. et al. Mitigation of transportation stress in common carp, Cyprinus carpio, by dietary administration of turmeric // Aquaculture. 2022. Vol. 546. Article number 737380. DOI:https://doi.org/10.1016/j.aquaculture.2021.737380.
30. Raissy M., Ghafarifarsani H., Hoseinifar S. H. et al. The effect of dietary combined herbs extracts (oak acorn, coriander, and common mallow) on growth, digestive enzymes, antioxidant and immune response, and resistance against Aeromonas hydrophila infection in common carp, Cyprinus carpio // Aquaculture. 2022. Vol. 546. Article number 737287. DOI:https://doi.org/10.1016/j.aquaculture.2021.737287.
31. Rudiansyah M., Abdelbasset W. K., Jasim S. A. et al. Beneficial alterations in growth performance, blood biochemicals, immune responses, and antioxidant capacity of common carp (Cyprinus carpio) fed a blend of Thymus vulgaris, Origanum majorana, and Satureja hortensis extracts // Aquaculture. 2022. Vol. 555. Article number 738254. DOI:https://doi.org/10.1016/j.aquaculture.2022.738254.
32. Cheng C., Park S. C., Giri S. S. et al. Effect of Pandanus tectorius extract as food additive on oxidative stress, immune status, and disease resistance in Cyprinus carpio // Fish & Shellfish Immunology. 2022. Vol. 120. Pp. 287-294. DOI:https://doi.org/10.1016/j.fsi.2021.12.004.
33. Dawood M. A. O., El Basuini M. F., Yilmaz S. et al. Exploring the Roles of Dietary Herbal Essential Oils in Aquaculture: A Review // Animals (Basel). 2022 Vol. 12 (7). Article number 823. DOI:https://doi.org/10.3390/ani12070823.
34. Sumon M. A. A., Sumon T. A., Hussain M. A. et al. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge // Journal of microbiology and biotechnology. 2022. Vol. 32 (6). Pp. 681-698. DOI:https://doi.org/10.4014/jmb.2202.02032.
35. El-Saadony M. T., Alagawany M., Patra A. K. et al. The functionality of probiotics in aquaculture: An overview // Fish & Shellfish Immunology. 2021. Vol. 117. Pp. 36-52. DOI:https://doi.org/10.1016/j.fsi.2021.07.007.
36. Kuebutornye F. K. A., Abarike E. D., Lu Y. A review on the application of Bacillus as probiotics in aquaculture // Fish & Shellfish Immunology. 2019. Vol. 87. Pp. 820-828. DOI:https://doi.org/10.1016/j.fsi.2019.02.010.
37. Chang X., Kang M., Shen Y. et al. Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora // Ecotoxicology and Environmental Safety. 2021. Vol. 228 Article number 112977. DOI:https://doi.org/10.1016/j.ecoenv.2021.112977.
38. Lei X. Y., Zhang D. M., Wang Q. J. et al. Dietary supplementation of two indigenous Bacillus spp on the intestinal morphology, intestinal immune barrier and intestinal microbial diversity of Rhynchocypris lagowskii // Fish physiology and biochemistry. 2022. Vol. 48 (5). Pp. 1315-1332. DOI:https://doi.org/10.1007/s10695-022-01121-0.
39. Arinzhanov A. E., Miroshnikova E. P., Sizencov A. N., Kilyakova Yu. V. Vliyanie ul'tradispersnyh kormovyh dobavok, probioticheskih shtammov i ih kompleksov na soderzhanie essencial'nyh mikroelementov v organizme karpa // Mikroelementy v medicine. 2021. № S1. S. 8-10. DOI:https://doi.org/10.19112/2413-6174-2021-S1-02.
40. Miroshnikova E. P., Sizencov A. N., Arinzhanov A. E., Kilyakova Yu. V. Vliyanie bioticheskih i abioticheskih komponentov v sostave raciona karpa na strukturu kishechnogo mikrobioma i elementnyy status // Mikroelementy v medicine. 2021. № S1. S. 47-49. DOI:https://doi.org/10.19112/2413-6174- 2021-S1-23.
41. Bertocci F., Mannino G. Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses // Foods. 2022. Vol. 11 (13). Article number 1861. DOI:https://doi.org/10.3390/foods11131861.