Abstract. Pathogen abundance or pathogen genotypes may vary in space or time, resulting in fluctuations in immune responses. Genetic variation in the presence of biogeographically determined intraspecific diversity provides important information about the presence of such variations in a species widely used in laboratories and distributed worldwide, suggesting the presence of different immune responses against pathogens. Invertebrates have balancing selection with specific coevolution, in contrast to vertebrate AMPs, which have strong positive selection and a high probability of coevolution. Balancing selection on individual AMP genes in invertebrates may result in polymorphisms in amino acid sequences, potentially changing susceptibility to pathogens, the study of which is of high scientific significance. The purpose of the study was to investigate the potential existence of an extended haplotype (common to several individuals) or a separate haplotype encoding AMP among non-mammalian model organisms. Methods. The object of this study was a model organism (the greater wax moth Galleria mellonella). The analysis of G. mellonella genome assemblies was performed using 11 nuclear targets and the 16S ribosomal RNA region. Results. Six biogeographically distinct individuals were identified, obtained from both natural and artificial ecosystems: either from adults or larvae. Scientific novelty. The 11 nuclear targets encoding G. mellonella antimicrobial peptides and the 16S ribosomal RNA region helped to distinguish three population groups, which potentially supports the hypothesis of the existence of a variable innate immune response in this laboratory model in the presence of biogeographically determined intraspecific diversity.
innate immune response, antimicrobial peptides, Galleria mellonella, biogeography, intraspecific diversity
1. Gyssens I. C. Animal models for research in human infectious diseases. CMI editorial policy. Clinical Microbiology and Infection. 2019; 25: 649–650. DOI:https://doi.org/10.1016/j.cmi.2019.04.010.
2. Cutuli M. A., Petronio Petronio G., Vergalito F., Magnifico I., Pietrangelo L., Venditti N., Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence. 2019; 10 (1): 527–541. DOI:https://doi.org/10.1080/21505594.2019.1621649.
3. Gunatilake M. History and development of laboratory animal science in Sri Lanka. Animal Models and Experimental Medicine. 2018; 1 (1): 3–6. DOI:https://doi.org/10.1002/ame2.12003.
4. Ménard G., Rouillon A., Cattoir V., Donnio P. Y. Galleria mellonella as a suitable model of bacterial infection: past, present and future. Frontiers in Cellular and Infection Microbiology. 2021; 11: 782733. DOI:https://doi.org/10.3389/fcimb.2021.782733.
5. Pereira M. F., Rossi C. C., da Silva G. C., Rosa J. N., Bazzolli D. M. S. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathogens and Disease. 2020; 78 (8): ftaa056. DOI:https://doi.org/10.1093/femspd/ftaa056.
6. Ramirez J. L., Hampton K. J., Rosales A. M., Muturi E. J. Multiple mosquito AMPs are needed to potentiate their antifungal effect against entomopathogenic fungi. Frontiers in Microbiology. 2023; 13: 1062383. DOI:https://doi.org/10.3389/fmicb.2022.1062383.
7. Tamura K., Stecher G., Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. 2021; 38 (7): 3022–3027. DOI:https://doi.org/10.1093/molbev/msab120.
8. Andrejko M., Mak P., Siemińska-Kuczer A., Iwański B., Wojda I., Suder P., Kuleta P., Regucka K., Cytryńska M. A comparison of the production of antimicrobial peptides and proteins by Galleria mellonella larvae in response to infection with two Pseudomonas aeruginosa strains differing in the profile of secreted proteases. Journal of Insect Physiology. 2021; 131: 104239. DOI:https://doi.org/10.1016/j.jinsphys.2021.104239.
9. Vergis J., Malik S. V. S, Pathak R., Kumar M., Kurkure N. V., Barbuddhe S. B., Rawool D. B. Exploring Galleria mellonella larval model to evaluate antibacterial efficacy of Cecropin A (1-7)-Melittin against multi-drug resistant enteroaggregative Escherichia coli. Pathogens and Disease. 2021; 79 (3): ftab010. DOI:https://doi.org/10.1093/femspd/ftab010.
10. Zdybicka-Barabas A., Stączek S., Pawlikowska-Pawlęga B., Mak P., Luchowski R., Skrzypiec K., Mendyk E., Wydrych J., Gruszecki W. I., Cytryńska M. Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells. Amino Acids. 2019; 51: 175–191. DOI:https://doi.org/10.1007/s00726-018-2641-4.
11. Stączek S., Zdybicka‐barabas A., Wojda I., Wiater A., Mak P., Suder P., Skrzypiec K., Cytryńska M. Fungal α‐1,3‐glucan as a new pathogen‐associated molecular pattern in the insect model host Galleria mellonella. Molecules. 2021; 26 (16): 5097. DOI:https://doi.org/10.3390/molecules26165097.
12. Vertyporokh L., Kordaczuk J., Mak P., Hułas-Stasiak M., Wojda I. Host-pathogen interactions upon the first and subsequent infection of Galleria mellonella with Candida albicans. Journal of Insect Physiology. 2019; 117: 103903. DOI:https://doi.org/10.1016/j.jinsphys.2019.103903.
13. Ramírez-Sotelo U., García-Carnero L. C., Martínez-Álvarez J. A., Gómez-Gaviria M., Mora-Montes H. M. An ELISA-based method for Galleria mellonella apolipophorin-III quantification. PeerJ. 2024; 12: e17117. DOI:https://doi.org/10.7717/peerj.17117.
14. Wijeratne T. U., Weers P. M. M. Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein. Molecular and Cellular Biochemistry. 2019; 458 (1–2): 61–70. DOI:https://doi.org/10.1007/s11010-019-03530-x.
15. Serrano I., Verdial C., Tavares L., Oliveira M. The virtuous Galleria mellonella model for scientific experimentation. Antibiotics. 2023; 12 (3): 505. DOI:https://doi.org/10.3390/antibiotics12030505.