ФУНКЦИОНАЛЬНЫЕ МОРФОДЕНСИТОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ХРОМАТИНА ЯДРА И ЦИТОПЛАЗМЫ ЭРИТРОБЛАСТОВ И ЭРИТРОЦИТОВ ПТИЦ В ПОСТЭМБРИОНАЛЬНОМ ОНТОГЕНЕЗЕ
Рубрики: БИОЛОГИЯ
Аннотация и ключевые слова
Аннотация (русский):
Аннотация. Цель – характеристика развития синтетической активности полихроматофильных эритробластов и эритроцитов, в частности статуса гемоглобин-синтезируемой функции клеток эритроидного ряда птиц в раннем постэмбриональном онтогенезе. Методы. Экспериментальная часть исследования была выполнена в условиях ООО «Чебаркульская птица» (Чебаркульский район Челябинской области, Россия). Изучалась цельная кровь кур-бройлеров Hubbard ISA F15 четырех возрастных групп (n = 40): I группа – 1-суточные птенцы; II – 7-суточные цыплята; III – 23-суточные бройлеры; IV – 42-суточные куры. Научная новизна. Цитофизиологические и эпигенетические параметры синтеза гемоглобина эритробластами и юными эритроцитами важны в выяснении регуляции функций клеток крови в норме, адаптации и при нарушениях. Критерии синтетической активности эритробластов и созревающих эритроцитов животных и человека – это оптическая плотность как показатель концентрации эухроматина и метаболической динамики цитоплазмы, а также площадь, как показатель распределения эухроматина в строме ядра и размера цитоплазмы. Результаты. На модельном организме бройлерных кур по результатам расчета спектральных, морфометрических и оптикометрических величин ядерного хроматина, цитоплазмы и их индексируемых соотношений для полихроматофильных эритробластов и эритроцитов – был охарактеризован синтез гемоглобина в раннем постэмбриональном онтогенезе. По результатам определения геометрических (n = 30) и оптических (n = 300) параметров эухроматина, гетерохроматина ядра и цитоплазмы были рассчитаны их соотношения и индексы для полихроматофильных эритробластов, полихроматофильных эритроцитов и зрелых эритроцитов в мазках периферической крови (n = 158), окрашенных по Паппенгейму. Цитохимические реакции, отражающие физиолого-биохимические взаимосвязи эритробластов и эритроцитов, – это основа комплексного морфоденситометрического теста уровня активности синтеза гемоглобина клетками эритроидного ряда в раннем постнатальном онтогенезе.

Ключевые слова:
эритробласты, эритроциты, эухроматин, гетерохроматин, цитоплазма, гемоглобин, морфоденситометрические параметры, эпигенетика, оптическая плотность
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Grigor’ev S. A., Popova E. Yu. Srodstvo podobiy: mekhanizmy samoassotsiatsii i kompartmentalizatsii eukarioticheskogo khromatina [Affinity of similarities: mechanisms of self-association and compartmentalization of eukaryotic chromatin] // Molecular biology. 2019. No. 53 (6). Pp. 933-953. DOI:https://doi.org/10.1134/S0026898419060053 (In Russian.)

2. Khabarova A. A., Ryzhkova A. S., Battulin N. R. Reorganizatsiya khromatina v protsesse eritroidnoy differentsirovki [Reorganization of chromatin in the process of erythroid differentiation] // Vavilov Journal of Genetics and Selection. 2019. No. 23 (1). Pp. 95-99. DOI:https://doi.org/10.18699/VJ19.467 (In Russian.)

3. Sanders T. J. et al. Extended Archaeal Histone-Based Chromatin Structure Regulates Global Gene Expression in Thermococcus kodakarensis // Frontiers in Microbiology. 2021. No. 12. Article number 681150. DOI:https://doi.org/10.3389/fmicb.2021.681150

4. Rzhepakovskiy I. V., Timchenko L. D., Piskov S. I., Avanesyan S. S., Sizonenko M. N., Shakhbanov M. Sh., Nagdalyan A. A., Rebezov M. B. Trekhmernaya rentgenovskaya mikrotomografiya serdtsa kurinogo embriona v rannem periode embriogeneza [Three-dimensional X-ray microtomography of the heart of a chicken embryo in the early period of embryogenesis] // Agrarian Science. 2023. No. 1 (10). Pp. 24-29. DOI:https://doi.org/10.32634/0869-8155-2023-375-10-24-29 (In Russian.)

5. Bell S. G. An introduction to hemoglobin physiology // Neonatal Network. 1999. No. 18 (2). Pp. 9-15. DOI:https://doi.org/10.1891/0730-0832.18.2.9

6. Ponka P. et al. Erythropoiesis, Hemoglobin Synthesis, and Erythroid Mitochondrial Iron Homeostasis // In: Handbook of Porphyrin Science: with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Santa Barbara: World Scientific, 2013. № 27. Pp. 41-84. DOI:https://doi.org/10.1142/9789814407755_0011

7. Kumari A. Heme Synthesis (Chapter 8) // In: Sweet Biochemistry: Remembering Structures, Cycles, and Pathways by Mnemonics. London: Academic Press, Elsevier Science, 2018. Pp. 33-36. DOI:https://doi.org/10.1016/B978-0-12-814453-4.00008-X

8. Ryzhkova A., Taskina A., Khabarova A., Fishman V., Battulin N. Erythrocytes 3D genome organization in vertebrates // Scientific Reports. 2021. No. 11 (1). Article number 4414. DOI:https://doi.org/10.1038/s41598-021-83903-9

9. Nizovtseva E. V., Gerasimova N. S., Studitskiy V. M. Vliyanie atsetilirovaniya gistona N4 na distantsionnye vzaimodeystviya v khromatine [The influence of histone H4 acetylation on long-distance interactions in chromatin] // Herald of Moscow University. Series 16. Biology. 2019. No. 74 (4). Pp. 308-312. DOI:https://doi.org/10.3103/S0096392519040114 (In Russian.)

10. Takahata S., Murakami Y. Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast // Biomolecules. 2023. No. 13. Article number 377. DOI:https://doi.org/10.3390/biom13020377

11. Gasparotto M., Lee Y.-S., Palazzi A., Vacca M., Filippini F. Nuclear and Cytoplasmatic Players in Mitochondria-Related CNS Disorders: Chromatin Modifications and Subcellular Trafficking // Biomolecules. 2022. No. 12 (5). Article number 625. DOI:https://doi.org/10.3390/biom12050625

12. Krasikova A. V., Kulikova T. V. Raspredelenie markerov geterokhromatina v khromosomakh tipa lampovykh shchetok u ptits [Distribution of heterochromatin markers in lampbrush chromosomes in birds] // Genetics. 2017. No. 53 (9). Pp. 1077-1085. DOI:https://doi.org/10.7868/S0016675817090077 (In Russian.)

13. Zhang Z., Zhang R., Xiao K., Sun X. G4Beacon: An In Vivo G4 Prediction Method Using Chromatin and Sequence Information // Biomolecules. 2023. No. 13 (2). Article number 292. https://doi.org/10.3390/biom13020292

14. Gasser S. M. Visualizing Chromatin Dynamics in Interphase Nuclei. Science. 2002. No. 296 (5572). Pp. 1412-1416. DOI:https://doi.org/10.1126/science.1067703

15. Yeo J. H., Lam Y. W., Fraser S. T. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche // Biophysical Reviews. 2019. No. 11 (6). Pp. 873-894. DOI:https://doi.org/10.1007/s12551-019-00579-2

16. Manteyfel’ V. M., Karu T. Y. Snizhenie kompaktizatsii kondensirovannogo khromatina v limfotsitakh cheloveka pod vliyaniem nizkointensivnogo izlucheniya He-Ne lazera [Reduced compaction of condensed chromatin in human lymphocytes under the influence of low-intensity radiation from a He-Ne laser] // Proceedings of the Russian Academy of Sciences. Series Biological. 2009. No. 6. Pp. 654-661. DOI:https://doi.org/10.1134/S1062359009060028 (In Russian.)

17. Antonova E. I. et al. Osobennosti reorganizatsii khromatina yader i pokazateley kletochnogo tsikla gepatotsitov pecheni ryb posle vozdeystviya vysokoy vneshney temperatury [Features of nuclear chromatin reorganization and cell cycle indicators of fish liver hepatocytes after exposure to high external temperature] [e-resource] // Modern Problems of Science and Education. Surgery. 2012. No. 6. URL: https://science-education.ru/ru/article/view?id=7469 (date of reference: 05.09.2022). (In Russian.)

18. Lehmann R. R., Nienhaus R. H., Dénes R. M., Steinbach T. Changes of euchromatin/heterochromatin ratios in cell nuclei of the aortic adventitia in diabetic rats // Artery. 1987. No. 14 (2). Pp. 66-75.

19. De la Iglesia Inigo S., Moreno-Carralero M.-I., Lemes-Castellano A., Molero-Labarta T., Méndez M., Morán-Jiménez M.-J. A case of congenital dyserythropoietic anemia type IV // Clinical Case Reports. 2017. No. 5 (3). Pp. 248-252. DOI:https://doi.org/10.1002/ccr3.825

20. Kimura F. et al. Image quantification technology of the heterochromatin and euchromatin region for differential diagnosis in the lobular endocervical glandular hyperplasia // Diagnostic Cytopathology. 2019. No. 47 (6). DOI:https://doi.org/10.1002/dc.24155

21. Schreier S., Budchart P., Borwornpinyo S., Arpornwirat W., Triampo W. Circulating erythroblast abnormality associated with systemic pathologies may indicate bone marrow damage // Journal of Circulating Biomarkers. 2021. No. 10. Pp. 14-19. DOI:https://doi.org/10.33393/jcb.2021.2220

22. Gasparyan S. A., Popova O. S., Vasilenko I. A., Khripunova A. A., Metelin V. B. Otsenka fenotipa interfaznykh yader limfotsitov metodom kolichestvennogo fazovogo imidzhinga (QPI) u patsientok s endometrioidnymi kistami yaichnikov [Evaluation of the phenotype of interphase nuclei of lymphocytes using the quantitative phase imaging (QPI) method in patients with endometrioid ovarian cysts] // Almanac of Clinical Medicine. 2017. No. 45 (2). Pp. 109-117. DOI:https://doi.org/10.18786/2072-0505-2017-45-2-109-117 (In Russian.)

23. Kozovyy R. V., Pertsovich V. M., Koval'chuk L. E., Bagriy M. M. Analiz morfodensitometricheskie pokazateley sostoyaniya genoma limfotsitov periferieskoy krovi dolgozhiteley Prikarpat’ya [Analysis of morphodensitometric indicators of the state of the genome of peripheral blood lymphocytes in long-livers of the Carpathian region] // Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2013. No. 11 (2). Pp. 29-32. (In Russian.)

24. Wickramasinghe S. N., Pippard M. J. Studies of erythroblast function in congenital dyserythropoietic anaemia, type I: evidence of impaired DNA, RNA, and protein synthesis and unbalanced globin chain synthesis in ultrastructurally abnormal cells // Journal of Clinical Pathology. 1986. No. 39 (8). Pp. 881-890. DOI:https://doi.org/10.1136/jcp.39.8.881

25. Doty R. T., Phelps S. R., Shadle C., Sanchez-Bonilla M., Keel S. B., Abkowitz J. L. Coordinate expression of heme and globin is essential for effective erythropoiesis // The Journal of Clinical Investigation. 2015. No. 125 (12). Pp. 4681-4691. DOI:https://doi.org/10.1172/JCI83054

26. Lipunova E. A., Skorkina M. Yu. Sistema krasnoy krovi: Sravnitel’naya fiziologiya [Red blood system: Comparative physiology]. Belgorod: Izdatel’stvo Belgorodskogo gosudarstvennogo universiteta 2004. 216 p. (In Russian.)

27. Gavrilov O. K. et al. Normal’noe krovetvorenie i ego regulyatsiya [Normal hematopoiesis and its regulation] / Ed. by N. A. Fedorova. Moscow: Meditsina, 1976. 543 p. (In Russian.)

28. Rosse C., Trotter J.A. A Cytochemical and Radioautographic Analysis of Erythropoiesis at the Ultrastructural Level // American Journal of Anatomy. 1974. No. 141 (1). Pp. 41-72. DOI:https://doi.org/10.1002/aja.1001410104

29. Yap K. N., Zhang Y. Revisiting the question of nucleated versus enucleated erythrocytes in birds and mammals // American journal of physiology. Regulatory, integrative and comparative physiology. 2021. No. 321. Pp. 547-557. DOI:https://doi.org/10.1152/ajpregu.00276.2020

30. Kolesnik E. A., Derkho M. A., Strizhikov V. K., Strizhikova S. V., Gizatullina F. G., Ponomaryova T. A. Differential morphophysiological characteristics of erythrocyte precursors and mature erythroid cells in early postnatal ontogenesis of birds // International Journal of Biology and Biomedical Engineering. 2020. No. 14. Pp. 101-108. DOI:https://doi.org/10.46300/91011.2020.14.15

31. Kolesnik E. A., Derkho M. A. Kharakteristika problematiki morfofiziologii kletok krovi neonatal’nogo ontogeneza kur. Soobshchenie I. Osobennosti postembrional’nogo krovetvoreniya, razlichiya v podkhodakh i problematika morfofunktsional'nogo analiza krovi ptits (obzor) [Characteristics of the problems of morphophysiology of blood cells of neonatal ontogenesis of chickens. Message I. Features of postembryonic hematopoiesis, differences in approaches and problems of morphofunctional analysis of bird blood (review)] // Agro-Industrial Complex of Russia. 2019. No. 26 (4). Pp. 637-643. DOI:https://doi.org/10.5281/zenodo.4385556 (In Russian.)

32. Kolesnik E. A., Derkho M. A. Kharakteristika problematiki morfofiziologii kletok krovi neonatal'nogo ontogeneza kur. Soobshchenie II. Kharakteristika differentsial'nykh morfofiziologicheskikh markerov formennykh elementov krovi ptits [Characteristics of the problems of morphophysiology of blood cells of neonatal ontogenesis of chickens. Message II. Characteristics of differential morphophysiological markers of blood cells in birds] // Agro-Industrial Complex of Russia. 2019. No. 26 (4). Pp. 644-652. DOI:https://doi.org/10.5281/zenodo.4385940 (In Russian.)

33. Rothmann C., Cohen A. M., Malik Z. Chromatin Condensation in Erythropoiesis Resolved by Multipixel Spectral Imaging: Differentiation Versus Apoptosis // The Journal of Histochemistry & Cytochemistry. 1997. No. 45 (8). Pp. 1097-1108. DOI:https://doi.org/10.1177/002215549704500807

34. Heidarian A., Yousefi E., Somma J. Digital Image Analysis of Nuclear Morphometry in Thyroid Fine Needle Biopsies // Journal of the American Society of Cytopathology. 2017. No. 6 (5). P. S76. DOI:https://doi.org/10.1016/j.jasc.2017.06.189

35. Hidalgo D. T., Diaz Rojas P. A., Batista M. T., Anta A. S. La densidad óptica nuclear como indicador diagnóstico en el carcinoma papilar de tiroides [e-resource] // Revista Cubana de Investigaciones Biomédicas. 2020. No. 39 (3). URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002020000300013&lng=en&nrm=iso&tlng=es (date of reference: 14.09.2022).

36. Danukalo M. V., Melnikova O. V. Arterial hypertension as a predictor of morpho-densitometric changes development in rats` solitary-vagal complex // Journal of Education, Health and Sport. 2019. No. 9 (10). Pp. 132-142. DOI:https://doi.org/10.5281/zenodo.3497436

37. Shalamay U., Voronych-Semchenko N., Kovalchuk L., Bagriy M. Peculiarities of Morphodensitometric Indices of Epitheliocytes of the Oral Cavity Mucous Membrane in Children with Latent Iron Deficiency and Mild Iodine Deficiency // Journal of Pharmacy and Pharmacology. 2020. No. 8. Pp. 18-23. DOI:https://doi.org/10.17265/2328-2150/2020.01.004

38. Potapova S. G. et al. Rezul’taty komp’yuternoy eritrotsitometrii pri makrotsitarnoy anemii [Results of computer erythrocytometry for macrocytic anemia] // Tsitomorfometriya v meditsine i biologii: fundamental’nye i prikladnye aspekty: materialy II Moskovskoy regional'noy nauchno-prakticheskoy konferentsii (c mezhdunarodnym uchastiem). Moscow, 2009. Pp. 69-71. (In Russian.)

39. Mil’to I. V., Shevtsova N. M., Ivanova V. V., Serebryakova O. N., Takhauov R. M., Sukhodolo I. V. Gemopoeticheskie kletki kostnogo mozga krys posle vnutrivennogo vvedeniya modifitsirovannykh khitozanom nanochastits magnetite [Hematopoietic cells of rat bone marrow after intravenous administration of chitosan-modified magnetite nanoparticles] // Cytology. 2020. No. 62 (6). Pp. 418-427. DOI:https://doi.org/10.31857/S0041377120060061 (In Russian.)

40. Glushen S. V., Ivanova M. A., Gordienko N. S. Fraktal’naya ploshchad’ kletochnogo yadra v tsitometrii opukholey shchitovidnoy zhelezy [Fractal area of the cell nucleus in cytometry of thyroid tumors] // Meditsinskiy zhurnal. 2005. No. 4 (14). Pp. 39-40. (In Russian.)

41. Minashkina T. A. Morfologicheskaya kharakteristika eritrotsitov pri eksperimental’nom gipervitaminoze A [Morphological characteristics of erythrocytes in experimental hypervitaminosis A] // Morphology. 2011. No. 139 (2). Pp. 41-44. (In Russian.)

42. Lomanovskaya T. A., Boronikhina T. V., Yatskovskiy A. N. Izmeneniya morfologii eritrotsitov pri peredozirovke retinola pal'mitata [Changes in the morphology of erythrocytes with an overdose of retinol palmitate] // Russian Journal of Operative Surgery and Clinical Anatomy. 2020. No. 4 (1). Pp. 46-51. DOI:https://doi.org/10.17116/operhirurg2020401146 (In Russian.)

43. Wang Q., Wang J., Zhou M., Li Q., Wen Y., Chu J. A 3D attention networks for classification of white blood cells from microscopy hyperspectral images // Optics and Laser Technology. 2021. No. 139. Article number 106931. DOI:https://doi.org/10.1016/j.optlastec.2021.106931

44. Kade M. A., Evglevskiy A. A., Galenko-Yaroshevskiy P. A. Morfometricheskaya kharakteristika neyronov spinnogo mozga i spinal'nykh gangliev pri subarakhnoidal'nom vvedenii bupivakaina, meksidola i ikh sochetaniya [Morphometric characteristics of neurons of the spinal cord and spinal ganglia during subarachnoid administration of bupivacaine, Mexidol and their combinations] // Kuban Scientific Medical Bulletin. 2009. No. 8 (113). Pp. 44-48. (In Russian.)

45. Mogil’naya G. M., Durleshter V. M., Mogil’naya V. L. Sravnitel’naya kharakteristika yader epiteliotsitov pishchevoda Barretta v zone “poley effekta” pri razlichnykh formakh metaplazii [Comparative characteristics of the nuclei of epithelial cells of Barrett’s esophagus in the zone of “effect fields” in various forms of metaplasia] // Kuban Scientific Medical Bulletin. 2013. No. 1 (136). Pp. 125-127. (In Russian.)

46. Hübner B. et al. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments // Epigenetics & Chromatin. 2015. No. 8 (47). DOI:https://doi.org/10.1186/s13072-015-0038-0

47. Imai R. et al. Density imaging of heterochromatin in live cells using orientation-independent-DIC microscopy // Molecular Biology of the Cell. 2017. No. 28 (23). Pp. 3349-3359. DOI:https://doi.org/10.1091/mbc.E17-06-0359

48. Kaminskyi V. Morphodensitometric features of peripheral blood lymphocytes in patients with primary glomerulonephritis // Nephrology Dialysis Transplantation. 2020. Vol. 35. Iss. Supplement_3. DOI:https://doi.org/10.1093/ndt/gfaa142.P0454

49. Lutsenko M. T. Dinamika opticheskoy plotnosti gemoglobina v eritrotsitakh perifericheskoy krovi bol’nykh bronkhial'noy astmoy [Dynamics of the optical density of hemoglobin in the erythrocytes of peripheral blood of patients with bronchial asthma] // Bulletin of Physiology and Pathology of Respiration. 2010. No. 35. Pp. 29-30. (In Russian.)

50. Vetrovoy O. V., Tyul’kova E. I., Stratilov V. A., Baranova K. A., Samoylov M. O. Osobennosti metilirovaniya DNK i gistona N3 v mozge krys v otvet na tyazheluyu gipobaricheskuyu gipoksiyu i gipoksicheskoe postkonditsionirovanie [Features of DNA methylation and histone H3 in the brain of rats in response to severe hypobaric hypoxia and hypoxic postconditioning] // Cytology. 2019. No. 61 (10). Pp. 837-844. DOI:https://doi.org/10.1134/S0041377119080078 (In Russian.)

51. Tyul’kova E. I., Vataeva L. A., Stratilov V. A., Barysheva V. S., Vetrovoy O. V. Osobennosti metilirovaniya DNK i gistona N3 v gippokampe i neokortekse krys, perezhivshikh patologicheskie vozdeystviya v prenatal’nom periode razvitiya [Features of DNA methylation and histone H3 in the hippocampus and neocortex of rats that survived pathological influences in the prenatal period of development] // Neyrokhimiya. 2020. No. 37 (1). Pp. 64-74. DOI:https://doi.org/10.31857/S1027813320010197 (In Russian.)

52. Belik I. A. Vliyanie vysokoy dozy tartrazina na izmenenie ul’tramikroskopicheskikh pokazateley selezenki i timusa polovozrelykh krys-samtsov [Effect of a high dose of tartrazine on changes in ultramicroscopic parameters of the spleen and thymus of mature male rats] // Morfologicheskiy al’manakh imeni V. G. Koveshnikova. 2020. No. 18 (4). Pp. 6-12. (In Russian.)

53. Owen J. C. Collecting, processing, and storing avian blood: a review // Journal of Field Ornithology. 2011. No. 82 (4). Pp. 339-354. DOI: https://doi.org/10.1111/j.1557-9263.2011.00338.x

54. Mulisch M. Romeis Mikroskopische Technik. 19. Auflage / Edited by M. Mulisch, U. Welsch. Berlin, Heidelberg: Springer Spektrum, 2015. 611 p. DOI:https://doi.org/10.1007/978-3-642-55190-1

55. Markaki Y. Light Microscopy. Methods and protocols. Series: Methods in molecular biology / Edited by Y. Markaki, H. Harz. New York: Humana Press - Springer Protocols, 2017. 285 p. DOI:https://doi.org/10.1007/978-1-4939-6810-7

56. Kirillova I. A., Kirillov D. V. Reproduktivnaya biologiya Platanthera bifolia (L.) Rich. (Orchidaceae) na severnoy granitse areala (Respublika Komi) [Reproductive biology of Platanthera bifolia (L.) Rich. (Orchidaceae) on the northern border of the range (Komi Republic)] // Tomsk State University Journal of Biology. 2017. No. 38. Pp. 68-88. DOI:https://doi.org/10.17223/19988591/38/4 (In Russian.)

57. Abushmmala F., Alhanjouri M. Colour Based Segmentation of Red Blood Cells using K-means and Image Morphological Operations // International Journal of Advanced and Innovative Research. 2013. No. 2 (11). Pp. 344-350.

58. Zhang C. et al. White Blood Cell Segmentation by Color-Space-Based K-Means Clustering // Sensors. 2014. No. 14. Pp. 16128-16147. DOI:https://doi.org/10.3390/s140916128

59. Bailo O., Ham D.-S., Min Shin Y. Red blood cell image generation for data augmentation using Conditional Generative Adversarial Networks // arXiv:1901.06219v2 [cs.CV]. 2019. DOI:https://doi.org/10.48550/arXiv.1901.06219

60. D’yachenko A. A., Ryabukho V. P. Tsvetovye modeli predstavleniya polikhromaticheskikh interferentsionnykh izobrazheniy tonkikh sloistykh ob”ektov v opticheskoy mikroskopii [Color models for representing polychromatic interference images of thin layered objects in optical microscopy] // Computer Optics. 2019. No. 43 (6). Pp. 956-967. DOI:https://doi.org/10.18287/2412-6179-2019-43-6-956-967 (In Russian.)

61. Sokolova I. B., Polyntsev D. G. Effektivnost’ primeneniya mezenkhimnykh stvolovykh kletok dlya uluchsheniya mikrotsirkulyatsii v kore golovnogo mozga spontanno gipertenzivnykh krys [Efficiency of using mesenchymal stem cells to improve microcirculation in the cerebral cortex of spontaneously hypertensive rats] // Cytology. 2017. No. 59 (4). Pp. 279-284. (In Russian.)

62. Zhukotskiy A. V., Strogalov A. S., Kogan E. M., Nikolaeva E. A., Anisimov M. P., Yakubova N. I. O probleme ob"ektivizatsii tsitologicheskoy diagnostiki s pomoshch'yu optoelektronnykh sistem (morfodensitometricheskiy metod) [About the problem of objectification of cytological diagnostics using optoelectronic systems (morphodensitometric method)] // Intelligent systems. 1998. No. 3 (3-4). Pp. 233-250. (In Russian.)

63. Chiarini-Garcia H. Light Microscopy. Methods and protocols. Series: Methods in molecular biology / Edited by H. Chiarini-Garcia, R. C. N. Melo. New York: Humana Press - Springer Protocols, 2011. 244 p. DOI:https://doi.org/10.1007/978-1-60761-950-5

Войти или Создать
* Забыли пароль?