STUDY OF THE PROPERTIES OF FOOD FILMS BASED ON AGAR WITH THE ADDITION OF FUNCTIONAL COMPONENTS
Rubrics: BIOLOGY
Abstract and keywords
Abstract (English):
Abstract. In conditions of increasing environmental load from accumulated synthetic packaging materials in environmental objects, there is a need to develop new compositions of biodegradable films that additionally have functional properties to increase the shelf life of products. The scientific novelty of the research lies in the production of new types of biodegradable active films with the addition of protein hydrolyzate as an active component, as well as data on their properties. The purpose of the study is to establish the properties of biodegradable films based on agar with the addition of a suspension of protein hydrolyzate and CMC as active components. Research methods. The control (composed of agar and glycerin) and test samples of films (composed of agar, glycerin and a suspension of MCC and protein hydrolyzate in an amount of 5, 10 and 15 % by weight of the biocomposite) were determined for mechanical properties, microstructure, antioxidant properties, vapor permeability, solubility, and moisture absorption. Results. The introduction of a suspension into the composition of the biocomposite had a negative effect on the mechanical strength of the film – the tensile strength decreased from 9,71 MPa for the control sample to 3,35 MPa for the test sample with 15 % suspension, while the relative elongation was maximum for the sample with 10 % suspension – 54,9 %. The antioxidant properties of the films increased with the addition of the suspension: the antiradical activity of DPPH increased from 57.65 % in the control sample to 63.81 % in the test sample with 15 % suspension, and the phenol content – from 0.253 in the control sample to 0.502 mEq of gallic acid per 1 g for a prototype with 10% suspension. It was noted that the addition of the suspension had a significant effect on vapor permeability and moisture absorption. Thus, the results obtained showed the need for further research into the storage capacity of food products with different humidity levels when packaged in tested films.

Keywords:
food film, biopolymer, mechanical strength, antioxidant activity, agar, protein hydrolysate, suspension
Text
Publication text (PDF): Read Download
References

1. Nandi S., Guha P. Development, characterization and application of starch-based film containing polyphenols of piper betle L. waste in chicken meat storage // Food Chemistry. 2024. Vol. 431. Article number 137103. DOI:https://doi.org/10.1016/j.foodchem.2023.137103.

2. Mao S., Li F., Zhou X., Lu C., Zhang T. Characterization and sustained release study of starch-based films loaded with carvacrol: A promising UV-shielding and bioactive nanocomposite film // LWT. 2023. Vol. 180. Article number 114719. DOI:https://doi.org/10.1016/j.lwt.2023.114719.

3. Mouhoub A., Guendouz A., El Alaoui-Talibi Z., Koraichi S. I., Delattre C., El Modafar C. Evaluation of different characteristics and bioactivities of chitosan-based films incorporating Eugenia caryophyllus and Cinnamomum zeylanicum essential oils // Materials Chemistry and Physics. 2023. Vol. 307. Article number 128201. DOI:https://doi.org/10.1016/j.matchemphys.2023.128201.

4. Zhao Q., Fan L., J Li., Zhon S. Pickering emulsions stabilized by biopolymer-based nanoparticles or hybrid particles for the development of food packaging films: A review // Food Hydrocolloids. 2024. Vol. 146. Part A. Article number 109185. DOI:https://doi.org/10.1016/j.foodhyd.2023.109185.

5. Beji E., Keshk Sherif M. A. S., Douiri S., Charradi K., Hassen R. B., Gtari M., Attia H., Ghorbel D. Bioactive film based on chitosan incorporated with cellulose and aluminum chloride for food packaging application: Fabrication and characterization // Food Bioscience. 2023. Vol. 53. Article number 102678. DOI:https://doi.org/10.1016/j.fbio.2023.102678.

6. Huan Y., Zhang S., Vardhanabhuti B. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions // Journal of Dairy Science. 2016. Vol. 99. Iss. 5. Pp. 3305-3315. DOI:https://doi.org/10.3168/jds.2015-10278.

7. Harish Pandian J., Senthilkumar K., Venkata Ratnam M., Naveenkumar M., Samraj S. Azadirachta indica leaf extract mediated silver nanoparticles impregnated nano composite film (AgNP/MCC/starch/whey protein) for food packaging applications // Environmental Research. 2023. Vol. 216. Part 2. Article number 114641. DOIhttps://doi.org/10.1016/j.envres.2022.114641.

8. Rahman W. A., Ismail A. S., Majid N. A. Preparation and characterization of biocomposite film derived from microcrystalline cellulose (MCC) of jackfruit rind waste // Materials Today: Proceedings. 2022. Vol. 66. Part 10. Pp. 4055-4060. DOIhttps://doi.org/10.1016/j.matpr.2022.06.071.

9. Bangar S. P., Esua O. J., Nickhil C., Whiteside W. S. Microcrystalline cellulose for active food packaging applications: A review // Food Packaging and Shelf Life. 2023. Vol. 36. Article number 101048. DOI:https://doi.org/10.1016/j.fpsl.2023.101048.

10. Hamdan M. A., Ramli N. A., Othman N. A., Amin K. N. M., Adam F. Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film // Materials Today: Proceedings. 2021. Vol. 42. Part 1. Pp. 56-62. DOI:https://doi.org/10.1016/j.matpr.2020.09.304.

11. Chen Q., Shi Y., Chen G., Cai M. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent // International Journal of Biological Macromolecules. 2020. Vol. 142. Pp. 846-854. DOI:https://doi.org/10.1016/j.ijbiomac.2019.10.024.

12. Debnath B., Duarah P., Haldar D., Purkait Mihir K. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass // Food Packaging and Shelf Life. 2022. Vol. 34. Article number 100937. DOIhttps://doi.org/10.1016/j.fpsl.2022.100937.

13. Pires J. R. A., Souza V. G. L., Gomes L. A., Coelhoso I. M., Godinho M. H., Fernando A. L. Micro and nanocellulose extracted from energy crops as reinforcement agents in chitosan films // Industrial Crops and Products. 2022. Vol. 186. Article number 115247. DOI:https://doi.org/10.1016/j.indcrop.2022.115247.

14. Morais da Silva H., Mageste A. B., Barros e Silva S. J., Ferreira Guilherme M. D., Ferreira Gabriel M. D. Anthocyanin immobilization in carboxymethylcellulose/starch films: A sustainable sensor for the detection of Al(III) ions in aqueous matrices // Carbohydrate Polymers. 2020. Vol. 230. Article number 115679. DOI:https://doi.org/10.1016/j.carbpol.2019.115679.

15. Inphonlek S., Sunintaboon P., Leonard M., Durand A. Chitosan/carboxymethylcellulose-stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers // Carbohydrate Polymers. 2020. Vol. 242. Article number 116417. DOI:https://doi.org/10.1016/j.carbpol.2020.116417.

16. Yu C., Shan J., Ju H., Chen X., Xu G., Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability // Foods. 2023. Vol. 12. Article number 2692. DOI:https://doi.org/10.3390/foods12142692.

17. Priyadarshi R., Kumar B., Rhim J. W. Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions // International Journal of Biological Macromolecules. 2020. Vol. 162. Pp. 229-235. DOI:https://doi.org/10.1016/j.ijbiomac.2020.06.155.

18. Ćorković I., Pichler A., Buljeta I., Šimunović J., Kopjar M. Carboxymethylcellulose hydrogels: Effect of its different amount on preservation of tart cherry anthocyanins and polyphenols // Current Plant Biology. 2021. Vol. 28. Article number 100222. DOI:https://doi.org/10.1016/j.cpb.2021.100222.

19. Fernández-Santos J., Valls C., Cusola O., Roncero M. B. Composites of cellulose nanocrystals in combination with either cellulose nanofibril or carboxymethylcellulose as functional packaging films // International Journal of Biological Macromolecules. 2022. Vol. 211. Pp. 218-229. DOI:https://doi.org/10.1016/j.ijbiomac.2022.05.049.

20. Farhan A., Hani N. M. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol // Food Hydrocolloids. 2017. No. 64. Pp. 48-58. DOI:https://doi.org/10.1016/j.foodhyd.2016.10.034.

21. Kim H.-J., Roy S., Rhim J.-W. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films // Journal of Environmental Chemical Engineering 2021. Vol. 9 (5). Article number 106043. DOI:https://doi.org/10.1016/j.jece.2021.106043.

22. Studenikina L. N. Perspektivy razrabotki biorazlagaemogo kompozita na osnove polivinilovogo spirta i mikrocellyulozy // Modeli i tehnologii prirodoobustroystva (regional'nyy aspekt). 2019. № 2 (9). S. 31-35.

23. Dyshlyuk L. S., Prosekov A. Yu., Asyakina L. K. Izuchenie svoystv biorazlagaemyh plenok iz prirodnyh polisaharidov // Izvestiya vuzov. Prikladnaya himiya i biotehnologiya. 2019. T. 9. № 4. C. 703-711. DOI:https://doi.org/10.21285/2227-2925-2019-9-4-703-711.

Login or Create
* Forgot password?